Cholinergic Drugs (Ach): | <u>Name</u> | Site of Action | Mode of Action | Effect/Use | |-------------------------------------|--|---|---| | d-tubocurarine | NMJ | competitive antagonism | paralysis;
immobilization | | Gallamine | NMJ | competitive antagonism | paralysis;
immobilization | | Decamethonium | NMJ | depolarization
blockade | paralysis;
immobilization | | Succinylcholine | NMJ | depolarization
blockade | paralysis;
immobilization | | Atropine & Scopalamine | Cholinergic
parasympathetic
synapses | competitive
antagonism | makes pupils dilate;
used in surgery to
dry out lungs to
prevent fluid
accumulation | | Botulinis Toxin | ALL Ach synapses | Prevents release of
Ach from
presynaptic
terminals | can cause death;
used in research | | Neostigmine | Cholinergic
synapses, esp.
NMJ | incomplete
anticholinesterase
(excitatory) | used in the diagnosis and treatment of Myasthenia Gravis | | Eserine | Cholinergic
synapses, esp.
NMJ | Completely stops
acetylcholinesterase
(inhibitory) | research inhibitor | | Edrophonium | same | same | research inhibitor | | Nicotine | parasympathetic
ganglia | depolarization
blockade | research inhibitor | | Carbachol | same | facilitates
depolarization | used in research | | Hemicholinium | All Ach synapses | prevents reuptake | research | | DFP: Di-
isopropylflorophosphate | All Ach synapses | complete
anticholinesterase | research inhibitor | ## Catecholaminergic Drugs (Epi, NE, DA): | Name | Site of Action | Mode of Action | Effect/Use | |--|---|--|--| | AMPT (alpha methyl para tyrosine) | all catecholaminergic
synapses | inhibits synthesis of catecholamine transmitters (inhibitory) | research | | Alpha-methyl-dopa | Localized to sympathetic post-ganglionic neurons only | competitive
antagonism | research; also
previously used as a
depressant | | 6-hydroxydopamine | All cat. synapses | Attacks presynaptic terminals, causing cat. transmitter to leak out and become depleted | research inhibitor (when used with desmethyl imipramine, effect is restricted to dopaminergic neurons) | | reserpine (see also 5-HT drug effects below) | all adrenergic
synapses | Causes synaptic vesicles to rupture and prevents reuptake, causing depletion | Used as early depressant until side effects were discovered | | Propanalol | Beta adrenergic synapses | "Beta blocker" –
blocks β-adrenergic
receptors | Used to treat hypertension | | phentolamine | Alpha adrenergic synapses | Blocks alpha adrenergic receptors | research | | dopamine beta
hydroxylase | all adrenergic
synapses | facilitates adrenergic transmission | research | | cocaine | most adrenergic
synapses | 1. slows recapture of NE (excitatory), 2. prevents sodium from entering axons, thereby preventing spikes | Antidepressant Local anesthetic | | imipramine | All adrenergic synapses | slows recapture of NE (excitatory) | antidepressant | | Amphetamine | All catacholaminergic synapses | 1. promotes release of NE and DA 2. slows recapture of NE (maybe DA too) | Antidepressant;
stimulant; but can
produce psychosis
in large doses | | Name | Site of Action | Mode of Action | Effect/Use | |--|--|--|---| | MAO inhibitors (e.g. pargyline) | all adrenergic
synapses | inhibits MAO, slowing
breakdown of
adrenergic transmitters
(excitatory) | antidepressant | | Lithium | adrenergic synapses | Increases reuptake of NE (inhibitory) | Used to treat manic psychosis | | L-dopa | Dopaminergic synapses | DA precursor,
increases DA synthesis
(excitatory) | Used to treat
Parkinson's disease | | Haloperidol | All DA synapses, especially afferent collaterals in the RF | Blocks DA receptors | Antipsychotic | | Phenothiazines (chlorpromazine, thorazine) | same | same | Antipsychotic, used in treatment of schizophrenia | | apomorphine | all DA synapses | stimulates DA receptors | Research | | benzotropine | all DA synapses | slows DA reuptake (excitatory) | Research | | Ritalin | same | same | A.D.D. therapy | ## Serotonergic Drugs (5-HT): | <u>Name</u> | Site of Action | Mode of Action | Effect/Use | |-------------------|----------------|---------------------------|---------------------| | PCPA | all 5-HT | completely inhibits | research inhibition | | | synapses | synthesis by tryptophan | | | | | hydroxylase (inhibitory) | | | Cinanserin | same | competitive antagonism | research | | 5-HTP (5-hydroxy- | same | 5-HT precursor, increases | research | | typtophan) | | synthesis (excitatory) | | | amytryptaline | same | slows reuptake | research | | | | (excitatory) | | | Iproniazid | same | Anti-MAO | research | | LSD | same | inhibitory | hallucinogenic | | mescaline | same | ? | hallucinogenic | | [SSRI], Paxil, | same | enhances duration of | antidepressant | | Prozac | | serotonin in synapse | | | Name | Site of Action | Mode of Action | Effect/Use | |-------------------|---|---------------------------|----------------------| | Tetanus toxin | all inhibitory | Prevents release of | Lockjaw, research | | | synapses | GABA and glycine | | | strychnine | vertebrate inhibitory
synapses (GABA
and Glycine) | competitive
antagonism | rat poison, research | | muscimol | GABA synapses | Stimulates GABA receptors | research | | picrotoxin, | invertebrate | competitive | research | | bicuculline | inhibitory synapses | antagonism | | | Benzodiazepines | GABA synapses | GABA receptor | Anxiolytic muscle | | (Valium, Librium) | | agonists | relaxer, mild | | | | | anesthesia | | Barbiturates | same | same | General anesthesia | | (Pentobarbital, | | | antiepileptic | | Nembutol) | | | | ## Psychopharmacology terms/concepts: competitive antagonism: Drug competes with neurotransmitter to bond with receptor site. <u>depolarization blockade</u>: Drug causes depolarization of cell, but does not allow it to return to equilibrium potential, thereby inhibiting it. reuptake/breakdown enzyme inhibitors: If a drug slows or partially inhibits reuptake, the effect is that the transmitter remains in the synapse longer, thus producing an excitatory effect. If a drug completely blocks reuptake, however, the neurotransmitter supply will be depleted, causing an inhibitory effect. Likewise, drugs which partially block breakdown enzymes (e.g. MAO inhibitors), have an excitatory effect, but drugs which completely inhibit these enzymes have inhibitory effects.