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Theories, Constraints, and Cogrution 
Douglas L. Medin and David M. Thau 

n glancing at the Table of Contents and leafing through the chapters of this vol- 0 ume, readers will quickly realize that there exists a diversity of approaches to re- 
search in psychology, each offering a distinct perspective. We view this pluralism as 
healthy, and our goal is to add to it another exemplar. In this chapter, we describe four 
highly interrelated factors or strategies that have influenced our research in the study of 
concepts and classification learning: (a) ecological sensitivity, (b) functions, 
(c) constraints, and (d) formal models and theories. We also outline some interrelations 
among these influences using examples drawn from the area of categorization. Finally, 
contrary to our exemplar theorist natures, we conclude with an abstracted version of the 
methodology we would like to embrace. 

It is important to note that the four factors we discuss act in a highly parallel fash- 
ion and that, to a certain extent, some act as checks and balances for others. Before dis- 
cussing the interrelations among these factors, however, it is important to describe our 
particular bias on each factor considered individually. 

This research was supported by National Science Foundation Grants ENS 89-18701 and BNS 89-18700, Edward Smith. Larv 
Barsalou. Edward Wisniewski, Woo-Kyoung Ahn, Frances Kuo, and Colleen Seifert provided guidance on this chapter. 
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MEDIN, THAU 

Ecological Sensitivity 

Ecological Validity 
We disagree with two extreme opinions concerning the role of ecological validity in psy- 
chology: (a) that nonnaturalistic experiments are flawed by their very nature and (b) that 
ecological validity should not even be a concern. 

The first opinion is that if one wants to understand cognitive processes that oper- 
ate in realistic, everyday situations, one should only conduct experiments that reflect the 
complexity of these situations. A problem with this argument is that the conclusion does 
not follow logically from the premise. Whatever ecological validity is, it cannot be 
equated with arguing against well-controlled experiments. We have never heard the claim 
that two confounded variables must ever more remain so because they happen to be cor- 
related in realistic situations. 

We also disagree with the premise of the argument. We do not think that our research 
agenda should be limited to the sort of practical questions that a layperson might find inter- 
esting. The most challenging questions about the mind typically involve processes that are so 
natural that we tend to take them for granted. For example, perception does not seem to be 
a problem because it does not occur to us to ask how a two-dimensional retinal projection 
gets converted into the experience of a three-dimensional world. Subjectively, the world is 
there and we see it, so there is nothing to be explained. Nor does it occur to us to ask just 
how we bring syntactic and pragmatic knowledge to bear on comprehendmg a sentence. 
People speak, and we understand them. We also know how chddren learn language-they 
imitate their parents. The mysteries arise only when we take a closer look, and our natural 
experience does not prompt us to do so. It is the different or unusual that catches our atten- 
tion; shared cognitive abilities tend to be taken for granted. 

cialized cognitive modules that lead them to behave unusually in laboratory experiments. 
Therefore, artificiality is not a problem. Although we agree that introductory psychology 
has not yet been taught long enough for the natural selection of special-purpose survival 
strategies to take place, we think this position misses certain points. 

and conceal others. For example, although one can learn something about schedules of 
reinforcement by putting pigeons in a Skinner box, this will not provide any information 
about how pigeons navigate. So, for openers, one needs to pay some attention to the 
world to determine which capabilities are in need of explanation. 

The argument on the other side of the issue is that people have not evolved spe- 

First, any experimental situation will reveal some aspects of behavior and cognition 
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THEORIES, CONSTRAINTS, AND COGNITION 

Another important point is that ignoring real-world contexts increases the risk of 
failing to capture relevant information in analyses and at the risk of solving nonexistent 
problems. James J. Gibson argued that the view that we construct percepts by combining 
low-level sensory cues was a misguided consequence of elementaristic, impoverished psy- 
chological experiments (Gibson, 1979). Gibson’s research program focused on an analysis 
of the information available in the environment, which he suggested was much more rich 
than people had assumed. By our reading, Gibson argued that inadequate analyses of the 
information available to the perceptual system may lead one to posit all sorts of complex 
computations to derive information that is actually already available. No analysis of per- 
ceptual processes can get very far without taking seriously the environment and the in- 
formation it affords. Researchers in the area of artificial intelligence (AI), such as David 
Marr, were heavily influenced by Gibson’s work, precisely because it addressed broad, 
computational-level questions (we use computational in Marr’s, 1982, general sense, which 
is more abstract than its typical use in, for example, computational vision). 

The Ecological and the Artificial 
Although ecological sensitivity is important, it is clear that organisms are not driven by 
their environment alone. Because they have evolved along unique paths, different organ- 
isms will react differently to the same situation. Even at the level of sensory systems, 
some species are endowed with capabilities that others lack. Given that organisms have 
evolved mechanisms that process information from their environment, we must be con- 
cerned both with information in the environment and about the internal mechanisms that 
play a role in any given behavior. 

Unfortunately, because organisms have evolved to cope with their environments, it 
is often difficult to determine whether an organism’s behavior is due to cues in the envi- 
ronment or to some internal mechanism. It is in making this discrimination that the role 
of artificial situations becomes important. In our view, Shepards (1984) evolutionary per- 
spective on ecological constraints provides a clear example of this concern. 

plore and manipulate their environment. He further argued that this exploration is not 
random but rather is guided by internal schemata. These schemata allow organisms to 
notice and anticipate vitally important events under conditions of impoverished informa- 
tion or time constraints. 

First of all, Shepard (1984) agreed with Gibson (1979) that organisms actively ex- 

The general notion is that organisms are attuned to their environment and have 
internalized mechanisms for dealing with relevant structure. As an example, Shepard 
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MEDIN, THAU 

(1984) drew an analogy between the perceptual system and biological or circadian 
rhythms. The activity pattern of many animals is guided by day-night cycles that could, in 
principle, be directly under the control of the sun. Researchers have found, however, that 
when animals such as hamsters are placed under conditions of constant illumination, a 
very artificial situation, they continue to show 24-hr activity cycles, plus or minus only a 
few minutes. In short, the periodicity has become internalized so that it continues in the 
absence of the external stimulus, allowing the animal to anticipate the future and freeing 
it from depending directly on the sun. The latter would be advantageous for animals on 
cloudy days or in environments (e.g., the safety of a burrow) in which cues from the sun 
are not directly available. These rhythms are not fully independent of illumination, how- 
ever, and can be “entrained” by patterns of illumination produced in the laboratory. Cir- 
cadian rhythms, then, behave very much like internalized schemata that are sensitive to 
relevant information in the organism’s environment. 

Shepard (1984) suggested that the same situation holds for the perceptual system. 
Basically, certain structures or constraints associated with the environment (more prop- 
erly, the interaction of organisms with their environment) may be internalized or embod- 
ied in the perceptual system. To observe these constraints, and to evaluate their 
significance, researchers need to put organisms into artificial situations in which informa- 
tion underdetermines performance. In these ambiguous situations, one may see natural 
constraints or assumptions emerge, just as circadian rhythms are observed under the un- 
informative situation of constant illumination. 

Shepard’s (1984) framework will succeed or fail on its own merits in the area of 
perception. Our goal is not to defend this position in the domain of perception but rather 
to examine its viability for higher order cognitive processes such as categorization and 
reasoning. Later on, we will argue by example that it does provide an effective research 
strategy. Note that what we call ecological sensitivity involves a procedure for under- 
standing the relation of cognitive systems to their environment by using artificial, under- 
determined situations and is not a blanket endorsement of artificial situations of and by 
themselves. Indeed, worrying about real-world circumstances may be critical for interpret- 
ing results from these artificial situations. 

In short, we believe that a concern with real-world circumstances is important to 
ensure that laboratory results will be generalizable. Perhaps even more important, ecolog- 
ical considerations are critical for understanding cognition, even cognition in the labora- 
tory. Cognitive psychologists may profitably and explicitly violate ecological validity for 
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THEORIES, CONSTRAINTS, AND COGNITION 

certain purposes, but they cannot ignore ecological considerations. As we shall demon- 
strate, analyses of natural situations may also provide an important source of ideas about 
constraints that act to guide performance in complex cognitive tasks. 

Functions 
One way to incorporate ecological sensitivity into our methodology is by concerning our- 
selves with the functions of different behaviors and processes. Although it makes sense 
to raise questions about function in the life sciences (as opposed to the physical sci- 
ences), these questions have not been wildly popular in cognitive psychology. In some 
cases, function has been implicitly assumed, and in others, it has been considered to be 
nothing more than idle speculation. However, Anderson (1990), one of our discipline’s 
preeminent cognitive modelers, has recently described a strategy based on asking ques- 
tions about function and then formulating computational models that satisfy or optimize 
this function. One of the major contributions of research on so-called “everyday memory” 
is that it raises questions about function, the answers to which are leading investigators 
along some very promising lines of research (e.g., Neisser & Winograd, 1988). 

Constraints and Naturalness 

Underdetermination 
As we have mentioned, the environment surrounding an organism is not the only factor 
bearing on that organism’s behavior. In fact, almost any interesting cognitive task actually 
involves a shortage of information from the environment. In language acquisition, for ex- 
ample, any linguistic input has to be consistent with the correct grammar (we will ignore 
the fact that speech is not always grammatical) but will necessarily be consistent with an 
infinite set of alternative grammars. Further sentences will not rule out many of these 
incorrect grammars, but any finite set of sentences will always be consistent with an un- 
limited number of grammars. Indeed, there are formal proofs (e.g., Gold, 1967; Pinker, 
1984; Wexler & Culicover, 1980) that in its general form, the language learning problem is 
insolvable. 

Analogous problems in learning arise in a variety of contexts. Consider a rat that 
eats some contaminated food in the morning, wanders around its environment, sees a cat, 
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hears thousands of sounds, is exposed to innumerable sights and smells, and then gets 
sick late in the day. To what should the rat attribute its illness? Seeing the cat? The 

sound of rattling garbage can lids? The water it drank in the early afternoon? There are 
limitless possibilities, but laboratory research suggests that the rat would associate illness 
with the smell and taste of the food eaten in the morning and acquire an aversion to it 
(e.g., Garcia, Ervin, & Koelling, 1966). In general, this bias toward associating tastes and 
smells with illness serves the rat quite well. However, when the true association conflicts 
with a bias, learning may be difficult. For example, it is very hard, if not impossible, for a 

rat to learn to associate illness with visual cues. The general point is that organisms do 

not often have the luxury of running factorial experiments to determine which correla- 
tions are valid and informative. Instead, they have certain assumptions or expectations 
that allow some things to be readily learned and others not. 

Computational Complexity 
Even when possibilities can be systematically enumerated, there may be too many of 
them to allow an exhaustive search. The search issue comes up again and again in AI. 
Many A1 systems are computationally explosive; the time it takes to run the program in- 
creases exponentially as the problem size increases. To reduce this problem, A1 systems 
use heuristics and biases to reduce the number of possible choices from which a system 
must decide. 

Complexity problems have important implications for processing models. Consider 

the problem of category construction in children. Nelson (1974) argued that children 
learn natural object categories by first constructing their own categories and then learn- 
ing which labels apply to them. A model of this type of category construction could ei- 
ther generate and then evaluate all possible category partitions or it could be biased to 
only generate a subset of the possible partitions. Given that the number of ways of parti- 
tioning unclassified objects is computationally explosive (one can partition 3 objects in 5 
ways, 4 in 15 ways, 5 in 52 ways, and 10 objects in more than 100,000 ways), the latter 
process seems more likely. Focusing on complexity issues in this way highlights places in 
theories in which constraints may be necessary. 

Naturalness and Implicit Assumptions 
What can organisms do in the face of these complexity and underdetermination prob- 
lems? We see no alternative to the idea that organisms must be biased to learn some 
things rather than others, to draw some inferences rather than others, and in general to 
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favor some possibilities at the expense of others. Because people cannot consider all the 
possibilities in a given situation, it should not be surprising that human cognition is inter- 
woven with implicit assumptions about the world (assumptions that oversimpllfy but of- 
ten work) and riddled with heuristics and strategies for dealing with problems and 
situations. In the case of categorization, one could say that people often rely on a “simi- 
larity heuristic,” that is, the assumption that objects belonging to the same categories will 
tend to be more similar than objects belonging to different categories. Presumably, the 
human perceptual and conceptual system has evolved such that the similarity heuristic is 
usually correct. 

More generally, these heuristics and implicit assumptions should render some tasks 
natural and easy (when people’s biases fit the world) and other tasks difficult and unnat- 
ural (when their natural biases are not supported by data). Therefore, one can use 
people’s performance in underdetermined situations to identify constraints or biases in 
learning. Naturalness can also serve as a guideline for evaluating theories of cognition. 
For example, categorization models make predictions about which kinds of partitionings 
will be hard for people to learn and which kinds will be easy. Theories may be judged by 
how well their predictions about naturalness correspond to data. 

Theories and Formal Models 
There are many distinct perspectives on the value of theories and formal models. Many 
researchers presuppose their value and importance and question the need for further dis- 
cussion. On the other hand, we have heard one important branch of formal methods, 
mathematical psychology, talked about in the past tense (and with an air of “good rid- 
dance” at that). We believe that formal methods are of fundamental significance, and that 
the critical issue is how to use them properly. By formal methods we refer to any of a 
variety of procedures for developing, testing, and evaluating theories of cognition. These 
methods include at least logical and mathematical proofs and analyses, mathematical 
models, and models cast in the form of computer programs or simulations. 

Why Formal Models Are Good 
Because Intuition Is Bad 
Argument by plausibility often drives our intuitions. Unfortunately, plausible argument is 
a rather blunt tool that often leads to mistakes. Consider, for example, some basic empiri- 
cal findings from categorization research. In a line of work begun by Posner and Keele 
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(1968, 1970), investigators have studied the learning of ill-defined or “fuzzy” concepts. The 
modal procedure involves selecting some prototype (or best example) and then trans- 
forming the prototype in different ways to construct learning examples. After learning is 
complete, transfer tests are given that involve both old and new examples. 

Three results from these procedures are very robust. First, typical examples (ones 
that vary little from the prototype) are more likely to be correctly categorized than are 
less typical examples. Second, the prototype, which is not presented with the test exam- 
ples, may be classified more accurately than examples that do appear during training 
(Homa & Vosburgh, 1976; Medin & Schaffer, 1978; Posner & Keele, 1968). Finally, perhaps 
the most striking result is that over a delay interval, classification accuracy drops more 
rapidly for old examples than for the prototype or other new examples (Homa & Cham- 
bliss, 1975; Posner & Keele, 1970; Strange, Keeney, Kessel, & Jenkins, 1970). 

These results have been interpreted as showing that (a) on the basis of experience 
with examples, people abstract out the central tendency or prototype for a category, and 
(b) classification decisions are based on similarity to this abstracted prototype. How else 
could prototypes be classified better than old examples, and how else could one explain 
differential retention? 

This interpretation of the data stands in contrast to a less intuitive exemplar model. 
Exemplar models assume that learning involves storing examples and that classification 
is based on the similarity of the test items to the previously stored examples. Because it 
did not seem plausible that such a model could account for these data, exemplar models 
were either never considered or rejected by argument. 

It turns out, however, that exemplar theories of categorization readily predict all 

these results (Hintzman & Ludlam, 1980; Medin & Schaffer, 1978). A prototype can be 
classified more accurately than an old example because the prototype of a category 
will tend to be very similar to many category examples and dissimilar to examples 
from contrasting categories. An old example will be maximally similar to itself but not 
necessarily similar to other examples from the same category and not necessarily dis- 
similar to examples from different categories. The same reasoning accounts for differ- 
ential forgetting. Individual examples may be “on their own,” whereas the prototype 

has many “friendly neighbors.” Of course, the real test of this theory depends on 
whether or not mathematical or simulation models actually produce these results. 
They do, although not for all assumptions about forgetting (see Hintzman & Ludlam, 
1980). If the exemplar model had been formalized and tested, it might not have been 
rejected so quickly and inappropriately. 
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Formal Models Indicate Where to  Look for Information About Processes 
As you can see, prototype and exemplar models of categorization often make similar pre- 
dictions. Once these models are formalized, one can begin to ask about where to look to 
discover contrasts between models or, equally to the point, where not to look. For in- 
stance, there are some fairly broad conditions under which these two types of models 
make not just similar but identical predictions (Estes, 1986a; Nosofsky, 1990). Of course, 
there are other contexts in which the models make distinctive predictions, and these are 
the predictions to test experimentally. For instance, because prototypes only represent 
information about central tendencies, prototype models are insensitive to correlational in- 

formation. Therefore, in a prototype model, knowledge about the average bird will not 
indicate that large birds are less likely to sing than small birds. Exemplar models, on the 
other hand, can account for this correlational information because most of the retrieved 
instances of large birds will not be song birds. The observation that people show sensitiv- 
ity to correlation (Medin, Altom, Edelson, & Freko, 1982) provides evidence in favor of 

exemplar models. 
Formal Models Help Conceptual Analyses 
Models allow formal comparisons, and formal comparisons frequently yield rather surpris- 
ing results. Consider, for example, the neural network model of category learning devel- 
oped by Gluck and Bower (1988). This model is on the surface quite distinct from prior 
categorization models in its assumptions about representation and in its competitive 
learning rule. Nosofsky (in press), however, has proven that this network model is ac- 
tually a special case of prototype models. This is a clear case in which formal analysis 
has illuminated deep underlying similarities that may have been concealed at the level of 

verbal description. 
Formal Models Force Researchers to Be Concrete 
Formal models have a built-in safeguard against vagueness. This is especially true for 
computational models; unless one’s assumptions can be translated into steps in a pro- 
gram, the program will not run. Writing a program forces one to face issues and assump- 
tions that otherwise might be hidden in informal verbal descriptions and mathematic 

formulas. 
Formal Models Can Show where Constraints Are Needed 
As discussed in the section on constraints, computational models also serve to heighten 
our awareness of computational complexity problems. A program might run but take for- 
ever to come up with an answer because of the number of possibilities to be considered. 

In A1 programming, a standard question is whether a program will “scale up,” that is, 
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continue to perform efficiently when given a larger problem or more knowledge. Pro- 
grams that do scale up need heuristics (i.e., constraints) to limit the amount of possibili. 
ties that they consider. 

Why Formal Models May Be Bad 
Formal Models May Invite Too Narrow a Focus 
To keep models from getting too complex, one may have to simplify the experimental 

situation so severely that what is truly of interest gets left out. As a consequence, one 
may end up constructing models that describe the constraints of the situation rather than 
the constraints of the human mind. In the study of decision making, for example, focus- 
ing on how people make choices between alternatives may ignore the problem of how 
people generate choices to begin with (e.g.] Hogarth, 1981). To avoid modeling only task- 
specific strategies, recent mathematical models have placed a premium on breadth and 
applicability to a variety of situations (e.g.] Hintzman, 1988; Raaijmakers & Shiffrin, 1981). 

Even within a domain of analysis, formal models tend to focus on some phenom- 
ena at the expense of others. Mathematical models often contain (free) parameters that 
are estimated as part of the application of the model to data. For example, consider Bow- 
er’s (1961) one element model for paired-associate learning. This model describes in great 
detail the consequences of assuming that learning takes place in an all-or-none manner 
and that the learning probability does not change across trials. At the same time, how- 
ever, the theory says nothing at all about what would make the learning probability large 
or small. That is, even successful models are like a slice through a sphere-they reveal 
some things and conceal others. 

cause one model is often proposed as an alternative to another, the assumptions shared 
by both may not be questioned. In the flurry of interest in contrasting prototype and ex- 
emplar models, for example, one should not lose sight of the fact that both models in- 
voke similarity (rather than other types of knowledge) as the basis for classification. 
Formal Models May Be Taken Too Literally 
When a model successfully describes a set of data, one should not confuse the explana- 
tory “success” of the formalization with the ideas that led to the formalization. One must 
recognize that a variety of other ideas, perhaps quite different in character, might have 
led to the same formalization. For example, the decision rule associated with exemplar 
models of classification often takes the form of the sum of the similarities of the probe to 
the examples of the category of interest divided by the sum of the similarities of the 

Comparisons between models may engender another type of narrow focus. Be- 
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probe to all stored examples. Fried and Holyoak (1984) have proposed a different model 
in which the learner stores information in memory that will allow him or her to make 
estimates of the likelihood that some probe was generated from the alternative exemplar 
distributions. It turns out that exemplar models of categorization are closely related to 
likelihood ratio models and under some conditions are not distinguishable from them 
(Nosofsky, 1988). In short, these two descriptions of the categorization process produced 
very similar formalizations. (For further illustrations and recommendations associated 
with the level at which models are evaluated, see Palmer, 1978.) 
Formal Models May Become Opaque 
When moving from mathematical models to computational models, one encounters what 
Smith (1978) referred to as the sufficiency/transpacy trade-off Any computational 
model comprises both a theory and some amount of extra programming necessary to 
make the model run. The general principles of the theory, however, may be buried in the 
mass of detail needed to make the model sufficient. Consequently, it may be difficult to 
isolate individual assumptions or components of a model and evaluate them separately. 
There may be an unavoidable trade-off between the clarity of a theory and its ability to 
handle complex problems. 

type of computational model. For these models in particular, it is often difficult to iden- 
tify the reason for success and failure (for a clear counterexample to this generalization, 
see Dell, 1986). Consequently, this area has had to use techniques (such as factor analy- 
sis) aimed at figuring out exactly what the model has learned. 

We include connectionist or parallel distributed processing models as a specific 

Interactions and Examples 
So far, we have treated the reader to a pretty abstract diet. In the following section, we 
link our arguments, observations, and conjectures to some specific examples. 

Constraints and Models 
Formal Models and Constraints on What Is Learnable 
We have described the computational complexity problems that confront any computing 
device, including algorithms and simulation models. To our knowledge, every model for 
category learning has constraints or biases associated with it in the sense that the models 
predict that some kinds of classification problems should be easier to master than others. 
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One way to evaluate alternative learning models is to see whether the problems that they 
predict should be easy or difficult are, in fact, easy or difficult for people to master. 

One constraint of interest is linear separability. A number of models, including pro- 
totype models, imply that categories must be linearly separable to be learnable. Classify- 
ing examples on the basis of similarity to a prototype basically involves summing 
evidence against a criterion. For example, if an instance shows a criteria1 number of 
“bird” features, it will be classified as a bird. The key is that there must be some 
weighted additive combination of properties that can be used to assign instances as mem- 
bers or nonmembers. This means that a prototype process requires that all bird examples 
be more similar to the bird prototype than to alternative prototypes and that nonbirds 
must be more similar to their respective prototypes than to the bird prototype. If a bat 
were more similar to the bird prototype than to the mammal prototype, it would be incor- 
rectly classified. 

Figure 1 gives a more intuitive description of linear separability. For examples that 
have values on two dimensions, the categories they form are linearly separable if there is 
a straight line that perfectly partitions them (Figure la). If no straight line will partition 
the objects (Figure lb), then there is no way to construct prototypes such that all exam- 
ples are closer to their own category prototype than to the prototype for the contrasting 
category. 
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FIGURE 1 Two-dimensional example of a linearly separable category (Panel A) and a 

nonlinearly separable category (Panel 6). (In each graph, members in 
Categories A and B are denoted by A and 6, respectively.) 
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If linear separability acts as a constraint on human categorization, people should 
find it easier to learn categories that are linearly separable than categories that are not 
linearly separable. To make a long story short, studies using a variety of stimulus materi- 
als, categories, subject populations, and instructions have failed to find any evidence that 
linearly separable categories are learned more easily than are nonlinearly separable cate- 
gories (e.g., Kemler-Nelson, 1984; Medin & Schwanenflugel, 1981). 

models, single-layered network models involve a weighted integration of input units and, 
in a sense, add up the evidence favoring a classification decision (Minsky & Papert, 1988). 
Although more sophisticated network models, those that have “hidden units,” can learn 
categories that are not linearly separable, Gluck (1991) has found that they consistently 
predict that linearly separable categories will be mastered more easily than nonlinearly 
separable categories. 

We hasten to add that these results are not a problem for network models as an 
entire class. One can make alternative assumptions about how the input is encoded (e.g., 
Gluck & Bower, 1988) or how examples are represented (e.g., Kruschke, 1990), neither of 
which lead to a linear separability bias. The point of our example is that one can com- 
pare human performance and theories at the broad level of constraints. Our models of 
category learning should be as unbiased by linear separability as are people. 
Formal Models and Constraints on What Is Learned 
In addition to focusing on what people can learn, constraints may also be found by study- 
ing what people do learn. 

Medin and Ross (1989) have argued that induction should be conservative. By con- 
servative they meant that abstractions should preserve more than the minimal informa- 
tion necessary to perform a task. Exemplar models fare better than prototype models 
mainly because prototype models do not conform to conservative induction (see Nosof- 
sky, in press, for a review of the comparisons made between prototype and exemplar 
models). For example, a prototype representation discards information concerning cate- 
gory size, variability of examples, and within-category correlations of properties. There is 
good evidence that people are sensitive to all three of these types of information (e.g., 
Estes, 198613; Flannagan, Fried, & Holyoak, 1986; Fried & Holyoak, 1984; Medin & Schaf- 
fer, 1978; Medin & Shoben, 1988). 

It is important to note, however, that exemplar models do produce abstract infor- 
mation. The key difference between abstraction in exemplar and prototype models is that 

Many network models are also constrained by linear separability. Like prototype 
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exemplar models integrate information at the time of retrieval rather than at the time of 
storage. During a new-old recognition task, for example, an old cue may access both its 
own representation in memory and those of similar stored exemplars. A new-old judg- 
ment for such a cue will be based on a conglomeration of several exemplars, and thus 
may be incorrect. Indeed, some of the strongest support for exemplar models comes from 
classification experiments in which new-old recognition is barely above chance (Smith & 

Medin, 1981). 
The moral of this story is not that exemplar models are better than prototype mod- 

els. Instead, the point is that attention to the information that is preserved or lost in clas- 
sification tasks provides clues about what constraints exist in categorization processes. 

Environmental Sensitivity and Function 
Cognitive psychologists often ask people to make similarity judgments, and the standard 
assumption is that these judgments reflect computations in terms of matching and mis- 
matching features. Goodman (1972), however, has argued that this notion of similarity is 
too unconstrained to be useful because one always needs to specify the respects in 
which two things are similar. Indeed, the most prominent theory of similarity to date, 
Tversky‘s (1977) contrast model, describes how selected features are evaluated but says 
nothing about how these features are selected in the first place. An important clue to 
“establishing respects” may be provided by an analysis of the functions that similarity 
comparisons serve for organisms in their natural contexts. 

similes in important ways. Similes are directional comparisons that involve assertions. 
For example, saying that butchers are like surgeons asserts something very different from 
saying that surgeons are like butchers. Our recent research on similarity judgments is mo- 
tivated by the idea that similarity is less a computation across a predefined set of fea- 
tures than a comparison in which the goal is to determine the relevant respects. These 
respects are an essential part of a speaker’s message when he or she asserts that one 
thing is like another. 

Like similes, similarity comparisons may be directional. For example, people rate 
the similarity of crayons to pencils to be greater than the similarity of pencils to crayons. 
We interpret this as an example in which the “respects” considered vary with the direc- 
tion of the comparisons and modify one’s impression of similarity. Specifically, in evaluat- 
ing the similarity of crayons to pencils, one focuses on salient properties of pencils and 
considers whether these properties are also true of crayons. A salient property of pencils 

Glucksberg and Keysar (1990) suggested that similarity comparisons may act like 
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is that one writes with them. One can also write with crayons. In the reverse comparison, 
a salient property of crayons is that one colors with them, and it is not clear that one 
can color with pencils. With respect to coloring, then, pencils and crayons are not very 
similar. 

“Discovering” respects may also influence similarity judgments. Medin and Gold- 
stone (1991) recently asked people to rate the similarity of terms on a 9-point scale, with 
9 being the highest similarity. Judgments were either made in two separate contexts or in 
a common context. In isolation, people rated the similarity of skin and hair to be 4.71 and 
the similarity of skin and bark to be 6.58. In a combined context, however, people rated 
the similarity of skin and hair to be greater than the similarity of skin and bark. These 
results support the idea that the comparison of skin and bark in isolation yields a sensi- 
ble type of respects, leading to correspondingly high ratings. In the combined context, 
subjects were led to consider a different set of respects, for which skin and bark were 
less similar than skin and hair. 

What do these results tell us about the way people make similarity judgments? We 
think they mean that people often answer a different question than the one being asked. 
When the experimenter asks, “How similar are A and B?’ the subjects appear to base 
their answers on “how A and B are similar.” That is, similarity judgments are primarily 
comparisons for establishing respects, not computations over respects that are prede- 
fined. If this conjecture is correct, the moral is clear. What people do in normal, more 
naturalistic contexts may intrude on and heavily influence performance in laboratory con- 
texts. This appears to be as true for similarity judgments by people as it is for the activity 
patterns of hamsters under conditions of constant illumination. 

Constraints, Functions, and Models 
In principle, anything might be a constraint. For example, rats could be biased to associ- 
ate illness with sounds instead of tastes. To guide one’s search for constraints, it is often 
useful to think in terms of natural environments and what functions might be served by a 
particular bias. Although thinking in terms of adaptation may in principle only shift the 
problem of constraints from the subject of inquiry to the researcher, we nonetheless be- 
lieve that questions about adaptation provide a useful heuristic. 
Inference 
An instructive example of this approach is Anderson’s (1990) rational theory of categori- 
zation. As we have mentioned, Anderson argued for the general strategy of constructing 
models on the basis of what would be rational (or even optimal) given an analysis of an 
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organism’s goals. The purpose of categorization, according to Anderson, is to maximize 
the inference potential or predictability of information. The key information for infer- 
ences is category validity, the probability of some feature being present in a given cate- 
gory. For example, if one knows that some entity is a bird, one can predict that it has 

two legs, has wings, may sing, and is unlikely to be dangerous. Anderson’s model pro- 
vides a surprisingly good account of a number of categorization effects, and we take this 
success as evidence that the inference function of categories is indeed important. 

duce certain kinds of categories over others. Consider the results from rule induction ex- 
periments in which people are asked to develop a rule for categorization based on 
preclassified examples. In this situation, there are many rules that would correctly parti- 
tion the examples. Among these rules, however, Medin, Wattenmaker, and Michalski 
(1987) found that conjunctive rules appeared more than five times as often as disjunctive 
rules. Conjunctive rules reveal a concern for, or sensitivity to, category validity. For ex- 
ample, a rule of the form A and B allows one to infer from knowledge of category mem- 
bership that both A and B will be present. In contrast, a rule of the form A or B does not 
allow any inference to be made with certainty. Because category validity is relevant to 
drawing inferences from category membership, the preponderance of conjunctive rules is 
consistent with the inference function of categories. 

Communication 
In contrast to Anderson (1990) and others who assume that inference is the sole function 

of categories, we believe that categories serve multiple functions (Matheus, Rendell, 
Medin, & Goldstone, 1989). For example, concepts play a role in communication. Almost 
all clustering algorithms, including Anderson’s rational theory, perform computations on 
the properties of examples. The resulting categories tend to maximize either inference 
potential or some relation of within- and between-category similarity. These methods, 
however, ignore the form of the category descriptions. If categories serve to ease commu- 
nication, people should prefer partitions that have straightforward descriptions. 

Unfortunately, some distributions of examples do not permit simple descriptions. In 
these situations, it seems likely that a bias toward easily described categories will lead 
people to represent their concepts by a simple rule plus a series of exceptions. Models 
that classify by predictiveness, on the other hand, will tend to develop categories based 
on overall similarity (“family resemblance”). On the basis of data from their rule induc- 
tion task, Medin et al. (1987) suggested that subjects develop categories of the latter sort. 
They found that subjects constructed simple rules, and when these rules did not work 

If categories serve to maximize inference potential, people may be biased to pro- 

180 

Co
py

ri
gh

t 
Am

er
ic

an
 P
sy

ch
ol
og
ic
al
 A
ss
oc
ia
ti
on
. 
No
t 
fo
r 
fu

rt
he

r 
di

st
ri

bu
ti

on
.



THEORIES, CONSTRAINTS, AND COGNITION 

perfectly, they “patched the rules up” instead of dropping them. In another experiment, 
Ahn and Medin (1989) asked subjects to sort examples that were structured so as to 
make one-rule descriptions impossible. They were able to predict sorting behavior in 
terms of a two-stage model in which the first stage corresponded to the development of a 
simple rule and the second stage consisted of strategies for dealing with examples that 
did not conform to the rule. In short, subjects in these two experiments preferred catego- 
ries with simple descriptions over the family resemblance categories predicted by 
inference-based classification models. 
Explanation 
Categories also play a role in theories and in explanatory structures. Some researchers 
acknowledge the importance of the explanatory function of concepts but suggest that 
only the similarity-based aspect of categorization is tractable. This attitude entails a com- 
mitment to the view that similarity-based categorization is an isolatable component or 
module in categorization. 

similarity-based categorization (see Medin & Ortony, 1989, for one approach). The relation 
between similarity-based and explanation-based categorization has recently become a 
central focus in our research. In one line of work, we have used children’s drawings as 
stimuli (see Figure 2) and introduced knowledge by varying the category labels (Wis- 
niewski & Medin, 1991). For example, in a control condition the categories may be la- 
beled A versus B and in the knowledge conditions (drawn by) high I@ versus low I@ 
(children). The task is to induce a rule that will successfully partition the categories. 

If similarity can be treated as a separate module, one might account for the influ- 
ence of knowledge by suggesting that induction occurs in two stages. In Stage 1, knowl- 
edge or explanations select and weight features of drawings. Stage 2 involves a similarity- 
based system that uses these weighted features to induce a rule. Our results, however, 
undermine the idea that similarity is an isolatable module. When the categories are la- 
beled A versus B, people develop rules of the form that Michalski’s (1983) similarity- 
based induction system would produce. For example, a typical rule for Figure 2 might be, 
“Category A drawings have buttons or stripes on their shirts and dark, thick hair.” In the 
knowledge conditions, the rules were either more abstract (e.g., “The high I& drawings 
are more relaxed and free flowing”) or consisted of abstract generalizations linked to 
more specific, supporting predicates (e.g., “The high I& drawings are more detailed, show- 
ing, for example, teeth, extensive shading, and drawing the body underneath the 
clothes”). 

We believe that the explanatory function of categories needs to be integrated with 
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Category A 

Category B 

FIGURE 2 Example of stimuli from Wisniewski and Medin (1991) (Subjects were to 
decide which group of pictures was drawn by children with high IQs and 
which was drawn by children with low IQs Used by permission ) 
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To condense things quite a bit (see Wisniewski & Medin, 1991, for details), these re- 
sults lead to two primary conclusions: (a) Knowledge-based rule induction involves develop- 
ing links between abstract, explanatorily-relevant properties and more specific perceptual 
features, and @) knowledge and similarity are tightly coupled and interact in a manner not 
captured by separate modules. In short, knowledge influences do more than simply select 
and weight perceptual features. These results, should they generalize, preclude the notion of 
a distinct sdarity-based induction module. To better understand the processes of category 
learning, the explanatory function of categories must d o r m  the models. 

Summary and Conclusions 
A true exemplar theorist following his or her model would be much more comfortable 
with case-based reasoning than with making abstract generalizations. Therefore, we will 
focus more on summary than on drawing conclusions. Nevertheless, we feel the need to 
insert a caution or two. The examples we have given are clearly not ideals. Many of our 
studies could be criticized on the standards that we have just outlined. In several cases, 
we may have learned something useful despite the fact that our stimuli and procedures 
may have worked to undermine success. 

nections between the four perspectives discussed. Although we do not cover every con- 
nection, many of the examples touch on one or more of them. 

Beginning with the interaction between environmental sensitivity and function, we 
note that attention to the environment provides information about the problems that an 
organism needs to solve. Knowing the obstacles that an organism is likely to meet pro- 
vides insight into what functions the organism is likely to have. Environmental sensitivity 
can also highlight the need for constraints. For example, if the language-learning problem 
is insolvable given the information available, there must be language-learning constraints. 
Finally, no formal model can adequately describe a process without representing the in- 
put to that process. 

simply unidirectional. The environment is a vast place, and observations need to be dnven 
by theory. This theory can be derived by concentrating on the functions that dlfferent pro- 
cesses might serve and the constraints that may be inferred from experimental data. 

formal modeling can indicate which processes will be combinatorially explosive and 

With this disclaimer in place, we conclude with a summary of the 12 pairwise con- 

The interactions between environmental sensitivity and the other perspectives are not 

Constraints also affect, and are affected by, formal models. As we have mentioned, 
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hence need constraints. In turn, knowledge of what constraints exist in a given process 

must be included in any model of that process. For example, models of category learning 
should be as unconstrained by linear separability as are people. 

Another interaction exists between constraints and functions. Medin et al.’s (1%7) 
finding that people produce conjunctive rules more often than disjunctive rules provides 
both a constraint and a clue to the functions that rule induction might serve. 

tal mformation, and constraints must be included in any model. The model can, in turn, de- 
termine whether the information given is sufficient. There may be too few constraints, too 
little information, or the model may not generalize to account for many functions. 

exist. For example, we have seen how the difference between conjunctive rules and dis- 
junctive rules implies function (predictiveness of concepts is important) and constraints 
(people produce more conjunctive than disjunctive rules) and bears on models (models 
that maximize category validity do a good job in predicting subjects’ performance in cer- 

tain tasks). 
Abstraction theorists would probably tell us that we are trying to say something 

like the following: For at least the domain of classification learning and concept forma- 
tion, a useful research strategy involves a mutually reinforcing interaction of sensitivity to 
ecological considerations, a constraints framework, questions about function, and formal 
and computational models. Ecological sensitivity guides and interprets experimental find- 
ings. Constraints address computational complexity. Function assists in understanding 
preferences or biases in underdetermined situations. Formal models help to avoid a host 
of mistakes and to construct mechanisms that could give rise to observed behavior. We 
think these four approaches to research, considered individually and in combination, pro- 
vide an effective framework for thinking about and studying cognition. 

Flnally, models interact with all three of the other perspectives. Function, environmen- 

Although we have only discussed pairwise interactions, three-way connections also 
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