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How do strategies affect the learning of categories that lack necessary and suf-
ficient attributes? The usual answer is that different strategies correspond to
different models. In this article we provide evidence for an alternative view—
Strategy variations induced by instructions affect only the amount of information
represented about attributes, not the process operating on these representations.
The experiment required subjects to classify schematic faces into two categories.
Three groups of subjects worked with different sets of instructions: roughly, form
a prototype of each category, learn each category as a rule-plus-exception, or
standard neutral instructions. In addition to learning the faces (Phase 1), subjects
were given transfer tests on learned and novel faces (Phase 2) and speeded
categorization tests on learned faces (Phase 3). There were performance differ-
ences in all three phases due to instructions, but these results were readily ac-
counted for by specific changes in the representations posited by the context
model of Medin and Schaffer; that is, strategies seemed to affect only the amount
of information stored about each exemplar's attributes.

The recent upsurge of interest in natural
categories such as bird, tree, and fruit has
been accompanied by parallel investigations
of representations and processing of artifi-
cial categories. In this article we are pri-
marily concerned with the role of strategies
in learning the attribute structure of artifi-
cial categories. But since the effects of strat-
egies can best be understood in terms of spe-
cific categorization models, we first provide
a brief overview of models and then take up
the strategy issue.

Category Learning Models

One idea growing out of research with
artificial categories is that based on experi-
ence with exemplars, people abstract some
measure of the central tendency of a cate-
gory and base their categorical judgments
on this central tendency, or prototype (e.g.,
Posner & Keele, 1968). A contrasting view
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posits that when an item is presented to be
classified, it acts as a retrieval cue to access
information associated with similar stored
exemplars, and this specific exemplar infor-
mation is the basis for category judgments
(Medin & Schaffer, 1978). According to the
latter idea, some animal might be catego-
rized as a rodent not on the basis of a com-
parison to a rodent prototype, but because
that animal has similar attributes to a rabbit
and the categorizer thinks that rabbits are
rodents. A specific proposal embodying this
idea, known as the context model, will be
considered in detail shortly.

Since both prototype and exemplar-based
models can account for many phenomena,
it is difficult to generate differential predic-
tions (see, e.g., Hintzman & Ludlam, 1980).
In one attempt to do so, Medin and Schaffer
(1978) contrasted the predictions of what
they called independent- and interactive-cue
theories, with prototype models being one
type of independent-cue theory. Indepen-
dent-cue theories assume that the informa-
tion entering into category judgments (over-
all similarity, distance, or validity) can be
derived from an additive combination of the
information from component attributes
(Franks & Bransford, 1971; Reed, 1972).
In other words, the more characteristic at-
tributes an exemplar has, the easier it should
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be to learn and classify. Interactive-cue the-
ories reject such additivity. Thus in Medin
and Schaffer's (1978) model, which is an
interactive-cue model, the various attribute
values comprising exemplars are combined
in a multiplicative manner to determine the
overall similarity of two exemplars.

The multiplicative rule has the implication
that an exemplar may be classified more ef-
ficiently if it is highly similar to one instance
and dissimilar to a second than if it has
medium similarity to two instances of a cat-
egory. Hence the context model predicts that
categorization performance will vary with
the number of stored exemplars similar to
the test item. Independent-cue models are
insensitive to such density effects. In a series
of four experiments, Medin and Schaffer
(1978) obtained clear support for the context
model. Data from original learning, transfer,
and speeded classification were in each case
more in line with the context model than
with a generalized independent-cue model.
In addition, a mathematical version of the
context model gave an excellent quantitative
account of classification performance on
transfer tests involving new and old in-
stances.

The Strategy Issue

One response to the above results is to
question their generality, particularly with
respect to the issue of strategies. One could
argue that there was something about the
Medin and Schaffer (1978) items, or some
detail of the experimental situation, that
discouraged people from developing the type
of category representation appropriate to in-
dependent-cue theories, like a prototype
model. If people had been instructed, say,
to form a prototype, the results might well
have been different.

The importance of strategies in classifi-
cation learning seems undeniable, and there
are important issues concerning how strat-
egies ought to be treated by a theory. One
point of view is that strategies modify both
representations and processes. According to
this idea, to understand categorization one
needs (a) a list of the possible strategies that
might be used in the task, (b) a separate
theory mapping each strategy on to perfor-

mance, and (c) a higher level theory speci-
fying the factors governing strategy selec-
tion. Under this view current theories of
categorization are essentially alternative
procedures, each of which can be evidenced
when their eliciting factors are operative. In
this sense all models are correct (and all in-
correct) at least some of the time.

An alternative view is that strategies in-
duced by instructions alter the underlying
representation in particular ways while leav-
ing unchanged the processes operating on
these representations. For example, a key
assumption of independent-cue models is
that judgments are based on a weighted,
additive combination of information from
component attributes. Strategies might alter
the weights attached to different attributes,
but judgments could still be based on an
additive and independent combination of in-
formation. In other words, strategies would
influence the parameters in the model but
leave the basic model intact. The same pos-
sibility holds for interactive-cue models,
such as the context model. One could hold
that strategy variations modify category rep-
resentations in essentially quantitative ways
while leaving the retrieval process implied
by the context model unchanged. The mul-
tiplicative rule for similarity relationships
would still hold, but the similarity parame-
ters associated with component attributes
might well differ for different strategies. The
goal of the present investigation was to pro-
vide evidence bearing on this alternative
view of strategies.

Overview of the Experiments

In the present experiments we attempted
to induce strategy variations by means of
instructions. The task involved two fuzzy
categories; that is, no individual cue was
perfectly valid and associated with members
of one category but not the other. In one
condition people were asked to use a rule-
plus-exception strategy; in a second people
were asked to learn the central tendency, or
prototypes, of the categories; in the third
people were given no special instructions.
Our aim was to see if the model could handle
learning and transfer data from these three
distinct conditions solely in terms of differ-
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ences in the similarity parameters associated
with the attributes.

By imposing some instructional control
over the strategies that people employed, we
hoped to obtain a clearer picture of the ef-
fects of strategies on performance as well as
an indication of what aspects of the data
were invariant over strategies. The instruc-
tional variations were also designed to put
particular models, for example, prototype
models, in the best light by asking people
to do what the models imply that they nor-
mally do.

The basic design of the experiments is
shown in Table 1. The items were Brunswik
faces varying in eye height (EH), eye sep-
aration (ES), nose length (NL), and mouth
height (MH). There were two possible val-
ues for each attribute, which are represented
in the table in terms of a binary notation.
For example, the value 1 on the attribute of
nose length might correspond to a long nose,
the value 0 to a short nose. Categories A and
B differ with respect to what is generally
true. That is, on each attribute Category A
exemplars tend to have the value 1 and Cat-
egory B exemplars the value 0, although
there is at least one exception for each at-
tribute in each category. This distribution
of attributes corresponds to that used by
Medin and Schaffer (1978) in their Exper-
iments 2 and 3; as they note, the two cate-
gories are separable by a linear discriminant
function as required by independent-cue
models (see, e.g., Reed, 1972).

Although the models will be evaluated in
terms of their ability to account for the entire
pattern of data, a good guidepost for distin-
guishing the context model from indepen-
dent-cue models is the comparison of Face
4 and Face 7 (see Table 1). Since the central
tendency, or modal prototype, for Category
A is 1111, Face 4 must be at least as close
to the prototype as Face 7 regardless of how
the attributes are weighted.1 Thus all inde-
pendent-cue models predict that Face 4 will
be easier to learn and more accurately clas-
sified than Face 7 because for the only di-
mension where the two differ, Face 4 has the
typical or characteristic value and Face 7
the atypical value. In contrast, interactive-
cue models in general and the context model
in particular predict Face 7 should be easier

Table 1
Attribute Structure of Categories Used in the
Experiment

Face
no.

4
7

15
13
5

EH

1
1
1
1
0

Attribute

ES

Training items

A exemplars

1
0
0
1
1

value

NL

1
1
1
0
1

MH

0
0
1
1
1

B exemplars

12
2

14
10

1
0
0
0

1
1
0
0

0
1
0
0

0
0
1
0

New transfer items

1
3
6
8
9

11
16

1
1
1
0
0
0
0

0
0
1
0
1
0
1

0
0
1
1
0
1
0

1
0
1
0
1
1
0

Note. EH = eye height; ES = eye separation; NL =
nose length, MH = mouth height. See the text for ex-
planation of binary notation.

because the number of highly similar pat-
terns is the most important factor in perfor-
mance. Although one would not want to as-
sume all dimensions are equally salient, for
convenience we shall call two faces highly
similar if they differ in value along only one
dimension. Face 7 is highly similar (differs
on only one attribute) to two other faces in
Category A (4 and 15) but is not highly sim-
ilar to any face in Category B. Face 4, on
the other hand, is highly similar to one face
in Category A (7) and to two in Category
B (2 and 12); it should be more difficult to
classify. This prediction is not entirely pa-
rameter free, but it holds over a very large

' Although we describe the prototype in terms of
modal values, a prototype could as readily be based on
mean values. This distinction would not lead to differ-
ential predictions in our experiments, as both a modal
prototype and a mean prototype represent special cases
of the general independent-cue model.
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range of values, and values that would alter
that prediction would produce other testable
distinctions between the context and inde-
pendent-cue models.

A Note on Stimuli and Category
Structure in Relation to the Models

The generality of any results from the
particular stimuli and category structure
shown in Table 1 are obviously limited. In
what follows we provide some rationale for
our particular choice of structure and stimuli
to clear up some common misconceptions
about the models.

Category structure. The categories were
set up to allow for a contrast between the
context model and independent-cue models
without violating any major constraint on
structure implied by these models. The only
constraint associated with the context model
is that categorization will be easier to the
extent that within-category similarity is
maximized and between-category similarity
is minimized. Independent-cue models re-
quire that categories be linearly separable
if perfect categorization is to occur. That is,
there must be some weighted additive com-
bination of attribute values that puts all A
exemplars into Category A and all B ex-
emplars into Category B. One way to see
that the stimuli in Table 1 satisfy that con-
straint is to note that all exemplars could be
correctly classified by looking at eye height,
nose length, and mouth height, determining
whether the values were typical of category
A or B, and then assigning the face to Cat-
egory A if two or more of the values were
typical for Category A and to Category B
if two or more of the values were typical for
B. When categories are linearly separable,
it is more difficult to distinguish the predic-
tions of the contending models, but as we
have seen, the structure in Table 1 does per-
mit some contrast.

Stimuli. One reason for using Brunswik
faces was that Reed (1972) used them in
studies that were taken as providing support
for a specific independent-cue model (pro-
totype theory). These experiments predated
the context theory, so it is difficult to judge
how it would have fared.

A second major reason for using Brunswik

faces is that they are highly confusable.
Though the individual values are distinctive,
individual faces differ from each other only
in the particular combination of attribute
values they possess. This might appear to
bias the experiment against the context
model inasmuch as it assumes that perfor-
mance is based on the retrieval of specific
item information; however, the context model
does not specifically assume that a distinct
or distinctly accessible representation is de-
veloped for each individual stimulus. In the
next paragraphs we amplify this point. (For
additional details, see Medin & Schaffer,
1978, pp. 210-212.)

In the context model the parameter re-
flecting the similarity of two values on an
attribute is assumed to be less when that
attribute is attended to, or forms part of a
hypothesis, than when it is not so salient. If
instructions encourage the belief that there
is only one critical attribute, many attributes
of the item will not be encoded in any detail
at all, and the resulting representations will
not be sufficient to distinguish the individual
exemplars (e.g., Bourne & O'Banion, 1969;
Calfee, 1969). In other words, it is not nec-
essarily assumed that a distinct representa-
tion is set up for each individual exemplar.

Consider a highly simplified classification
task involving two Category A patterns
(Ai = 1110, A2 = 1010) and two Category
B patterns (B, = 0001, B2 = 0010). Suppose
that a person in the experiment has selec-
tively attended (perhaps tested hypotheses
about) the second and third dimensions, so
less information has been stored about the
first and fourth dimensions. The subject's
representation of exemplar information
might be something like this:

?11?-A(A,) 000?-B(B,)

?010-A(A2) 7010-B(B2)

where the question marks indicate that in-
formation that would differentiate Value 1
and Value 0 on that dimension was not
stored (or cannot be accessed). Note that
this representation is not sufficient to pro-
duce perfect performance because the rep-
resentations associated with A2 and B2 can-
not be distinguished. When B2 is presented
for a test, the representation associated with
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A2 should be as likely to be accessed as the
representation associated with B2. If a new
pattern B3 = 0000 is presented, it should be
correctly classified because it would most
likely access the representation associated
with BI. Note further that on a new-old rec-
ognition test, B3 would very likely be rec-
ognized falsely as old for the same reason.
Thus depending on the completeness of the
exemplar information and the nature of the
probes, new-old recognition could actually
be at chance and classification could be
based on exemplar representations and be
relatively accurate.2

By using highly confusable stimuli, we
aimed to assure that when a training stim-
ulus was presented, it would not automati-
cally retrieve its own representation. As we
have seen the context model does not assume
that exemplars get perfectly coded nor that
a probe invariably accesses the correspond-
ing representation in memory. Even when
the correct category assignment has been
attached to each of the individual training
stimuli, classification performance may not
be perfect because the presentation of a
training stimulus would not invariably lead
to accessing its associated representation in
memory.

A secondary aim of using confusable stim-
uli was to make clearer the nature of the
contrast between independent-cue models
and the context model. Although the context
model assumes that performance is based on
retrieval of exemplar information and cer-
tain versions of the general independent-cue
model assume that performance is based on
an abstract prototype, the fundamental con-
trast is not between exemplar and prototype
models but, rather, between independent-cue
and interactive-cue models. For example,
one independent-cue model, the average
distance model (e.g., Reed, 1972), is an ex-
emplar model that assumes that represen-
tations associated with every training
stimulus are retrieved when a probe is pre-
sented and that the probe is assigned to the
category whose members have the greater
average similarity to (lesser average distance
from) the probe item. As long as binary-val-
ued dimensions are used, as in the present
experiments, the predictions of an average
distance model cannot be differentiated from

predictions of a prototype model. It is also
true that the context model and some (but
not all) other interactive-cue models assume
that categorization can involve a consider-
able amount of abstraction—The key dif-
ference is that interactive-cue models do not
assume that this abstracted information is
confined to an additive and independent sum
of components.

Finally, one should note that more general
forms of independent-cue models allow for
training stimuli to be classified on the basis
of specific information concerning that par-
ticular item. To the extent that this occurs,
it would be more difficult to distinguish pre-
dictions of the contending theories, at least
with respect to classification of training stim-
uli. Therefore, to minimize information spe-
cific to individual faces, the stimuli differed
from each other only in their combination
of values.

Method

Subjects
Ninety-six volunteers were solicited through ads in

local newspapers. The subjects, men and women ranging
in age from 17 to 30 years, were paid $2.50 for the
experimental session. Thirty-two people were assigned
to each of the three instructional conditions.

Stimuli
The stimuli were Brunswik faces displayed on an ap-

proximately 27 cm X 34 cm visual display screen (Dig-
ital Equipment Corp. VR-17 cathode ray tube screen)
linked to a PDP-11 computer. The face outlines were
13.5 cm x 11.5 cm and centered on the screen. The faces

2 The above offers one interpretation of the context
model that makes it qualitatively consistent with new-
old recognition being poor yet classification being ex-
emplar-based and relatively accurate. Other interpre-
tations of the context model are also possible here. Shif-
frin (Note 1) has suggested that there is some probability
on any training trial that one or more attribute values
of the pattern may be encoded erroneously. Thus though
the most likely outcome of a training trial is that all
encoded values are correct, the second most likely out-
come is that one encoded value is in error, the third most
likely outcome is that two encoded values are in error,
and so forth. The upshot is that training results in many
exemplars of various sorts being stored in memory, with
the likely majority being the exemplars actually pre-
sented or single-value perturbations of them. This ma-
jority underlies relatively accurate exemplar-based clas-
sification, and the sheer number of stored exemplars
would- b«'-responsible for poor new-old recognition.
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differed in nose length, mouth height, eye separation,
and eye height—the same attributes that Reed (1972)
varied in his studies of category learning. The nose was
either a 1.5-cm or a 3.0-cm vertical line centered within
the face outline. The mouth was a 4.0-cm horizontal
line, which was either 1.5 cm or 3.0 cm from the chin
line. The eyes were 1 cm X 2.5 cm and were separated
by either 1.5 cm or 3.5 cm (measuring from inner edges).
Finally, the eyes were either 2.5 cm or 5 cm from the
top of the face outline (measured to the top edge of the
eye). The two possible values on each of the four attri-
butes were combined to produce 16 distinct faces. The
categories were constructed in accordance with the de-
sign shown in Table 1.

All subjects were presented the same faces, but the
particular assignment of individual faces to the abstract
notation in Table 1 varied across subjects. For example,
for one subject 1001 might refer to a face with eyes up
and far apart, a long nose, and a low mouth; for another
subject 1001 might refer to a face with eyes down and
close together, a long nose, and a low mouth; and so on.
Overall, each face was assigned to a given abstract no-
tation exactly twice for each instructional condition,
once when Faces 4, 6, 7, 13, and 15 were associated
with Category A and once when they were associated
with Category B. Hence the assignment of faces to con-
ditions, instructions, and category labels was completely
counterbalanced.

General Procedures

The procedure had three phases: original learning,
transfer, and speeded classification. Each phase is de-
scribed below.

Initial learning. This phase consisted of up to 32
runs through the set of nine training faces (see Table
1), with a learning criterion of one errorless run. The
trial sequence went as follows: (a) A face appeared on
the screen, (b) To indicate their categorization, subjects
pressed either the button marked A or the button
marked B, which occupied the lower left and right cor-
ners, respectively, of a 4 X 4 button response box. (3)
The face remained on the screen for an additional 2 sec
while feedback was displayed below the face, (d) A 1-
sec intertrial interval ensued.

The first part of the instructions was the same for all
three instructional conditions. Subjects were told that
they would see faces differing only in nose length, mouth
height, distance between the eyes, and height of the eyes,
and that their task was to learn to correctly classify the
faces into Category A or Category B. They were further
told that each facial feature had some information value
for category membership, but that none was a perfectly
reliable indicator of category membership.

The general procedure was then described. Subjects
were told that they would be given immediate feedback
about the correctness of their categorization responses.
Subjects were then given the specific instructions de-
signed to induce strategy differences. One group was
given standard instructions not specifying any particular

strategy3; a second group was told to use a rule-plus-
exception strategy; the third group was asked to learn
the central tendency (or prototype) for each category.
Details are provided in Instructions for Initial Learning.
Note that none of the groups were given instructions to
use exemplars as a basis of performance, though this
is the process specified by the context model.

Transfer. Transfer tests immediately followed initial
training. Subjects were instructed they would see the
old faces mixed in with some new faces that were very
similar to the old. As each face appeared they were
asked to check to see whether it was a new face and,
if so, to press the button marked A' for new. Then re-
gardless of whether the face was old or new, they were
to decide whether the face belonged in Category A or
Category B, based on what they had learned before.
Finally, they were asked to indicate how confident they
were concerning which category the face belonged to
by pressing the Guess button, the Think so button, or
the Sure button. Subjects were then given two runs
through all 16 faces, using different randomizations of
the faces in the two runs. Each face remained on the
screen until the confidence judgment was given. The
intertrial interval was as before, but no feedback con-
cerning either recognition or classification was given.

Speeded classification. After the transfer tests sub-
jects were given an additional 16 runs through the nine
training faces. Presentation and feedback were exactly
as in initial learning; the only difference was that sub-
jects were now told that their latencies were being mea-
sured and they were to respond as fast as they could
without making errors. Subjects in the various instruc-
tional conditions were asked to use the strategy they had
employed before.

Instructions for Initial Learning
Standard instructions. These instructions were not

designed to focus subjects on any particular strategy.
They read as follows:

At first you will have to guess because I haven't given
you any information about which category a partic-
ular face falls into. Each face will be presented re-
peatedly during the learning phase of the experiment
and by paying attention to the feedback, eventually
you can be able to correctly assign each face to its
appropriate category.

Rule-plus-exception instructions. In addition to the
above standard instructions, subjects were told:

We want you to use a particular strategy to learn to
classify the faces. You might call it a "rule-plus-ex-
ception strategy". First pay attention to nose length
and learn which category most short-nosed faces fall
into and which category is correct for most long-nosed
faces. You will find that one short-nosed face and one

3 This instruction group is actually Experiment 3 of
Medin and Schaffer (1978). The full description is re-
ported here to facilitate cross-referencing and because
previously unreported data from this group are included
in the present article.
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long-nosed face are exceptions to the rule. Memorize
these faces. When you have mastered the task, you
will be doing something like looking to see if the face
is one of the exceptions; if so, make the correct re-
sponse; if not, apply the rule for short and long noses.
Usually the task would be quite difficult and fewer
than half the people who try it would be able to learn
it, but by using the rule-plus-exception strategy and
focusing on nose length, you should be able to readily
learn which category is correct for each face.

Prototype instructions. Since a prototype might be
based on either mean or modal values, the instructions
were designed to be neutral on this point. In addition
to the standard instructions, subjects were told:

There are probably many strategies you could use to
learn which category each face belongs to but we want
you to focus on one particular one. As the faces ap-
pear, we want you to form a general impression of
what "A" faces on the average look like and what
"B" faces on the average look like. At the end of the
learning phase of this experiment, I'll ask you whether
the faces in one category generally had short or long
noses, low or high mouths, up or down eyes, or close
or far-apart eyes. As you develop a general impression
of what "A" faces on the average look like and what
"B" faces on the average look like, we want you to
use these general impressions to help you classify the
faces.

General Results

Initial Learning

As anticipated the initial learning task
proved difficult, with fewer than half of the
subjects meeting the criterion of one error-
less run. Overall, 14 of 32 people met the
criterion in the standard and rule-plus-ex-
ception conditions, but only 8 of 32 reached
criterion in the prototype condition. All sub-
jects, however, improved with practice. If
performance were completely at chance,
subjects should have averaged 16 errors per
face during learning (each face was pre-
sented 32 times); instead average errors per
face were 8.0 under standard instructions,
6.4 under rule-plus-exception instructions,
and 9.2 under prototype instructions.

Table 2 shows the distribution of errors
across faces for the three instructional con-
ditions. The rule-plus-exception instructions
led to the best overall performance; the pro-
totype instructions resulted in the poorest
overall performance. There were also con-
siderable differences across instructional
conditions in the relative difficulty of indi-

vidual faces. Face 12, for example, was as-
sociated with an average of 17.4 errors under
prototype instructions but only 6.3 errors
under rule-plus-exception instructions. Sta-
tistical tests confirm the reliability of these
differences. An analysis of variance was con-
ducted on errors during learning using the
factors of instructional conditions, random-
izations, and faces. Significant effects were
obtained for the main effects of instructions,
F(2, 48) = 4.44, MSe = .93, p < .02; faces,
/X8, 384) = 55.96, MSe = .69, /x.OOOl;
and the Instructions X Faces interaction,
F(16, 384) = 3.96, MSe = .69, p < .001. In
short, different instructions produced differ-
ences in learning that interacted with par-
ticular faces.

There were also some constants across in-
structions. In particular, the theoretically
important comparison of Faces 4 and 7
showed a small but reliable advantage for
Face 7 in all conditions, t(95) = 2.87, p <
.01, consistent with the context model but
not with independent-cue models. Also the
faces that served as exceptions in the rule-
plus-exception condition (Faces 2 and 13)
were among the most difficult to master in
all conditions.

Transfer Tests

Recognition. Recognition performance
was very poor and there were only minor

Table 2
Mean Number of Errors for Each Face During
Initial Learning as a Function of Instructions

Instruction

Face
Number

4
5
7

13
15
2

10
12
14

Standard

4.5
8.2
4.2

11.9
2.8

12.9
4.4

15.2
6.6

Rule-plus-
exception

3.9
5.9
3.3

10.7"
2.8

13.8"
3.8
6.3
6.8

Prototype

7.7
9.2
6.7

13.7
4.9

10.3
4.2

17.4
8.7

M 8.0 6.4 9.2

" Face was an exception in the rule-plus-exception con-
dition.
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differences across instruction conditions. The
probability of saying new to an old face was
.19, .22, and .13 in the respective standard,
exception, and prototype instructional con-
ditions, but the probability of saying new to
a new face was only .23, .26, and .19 in the
respective conditions. Overall, 59 subjects
were more likely to say new to a new face
than to an old face, 9 showed no difference,
and 28 showed the opposite trend. Across
the 96 subjects new-old recognition was
barely above chance x20) = 6.44, p < .05.
As noted in the introduction, this result is
consistent with both classes of models under
consideration.

Categorization during transfer. Cate-
gorization accuracy for the nine old and
seven new faces for the various instructional
conditions is shown in the first columns of
Tables 3, 4, and 5. (The remaining columns
of these tables contain theoretical predic-
tions that will shortly be discussed.) Again
prototype instructions yielded the poorest
overall performance. Of course this may
merely reflect the fact that this group mas-
tered less of the categorical structure during
the initial learning phase. Of somewhat
greater interest are the differences between
the instructional conditions in the relative
difficulty of individual new faces. For ex-
ample, with rule-plus-exception instructions,
Face 1 was categorized as an A 45% of the
time and Face 3 as a B 80% of the time; in
contrast, with prototype instructions Face 1
was called an A 73% of the time and Face
3 a B 35% of the time. But importantly, al-
though the differences were small, Face 4
was never categorized more accurately than
Face 7 under any instructions. Moreover, the
largest difference favoring Face 7 occurred
under the prototype instructions, which
should have been maximally favorable to the
independent-cue model. Overall, Face 7 was
classified significantly more accurately than
Face 4, t(95) - 2.89, p < .02.

An analysis of variance of responses to the
old faces revealed significant effects of in-
structions, F(2, 48) = 5.32, M5e = .93,
p<.0l, and faces, F(8, 384) =17.56,
MSe = .84, p < .001. A similar analysis for
the new faces produced significant effects for
faces, F(6, 288) - 38.22, MSe = 1.00, p <
.0001, and for the Instructions X Faces in-

Table 3
Observed and Predicted Proportions of Correct
Categorizations for Each Face During
Transfer: Standard Instructions

Face

and
category

label Observed

Proportions

Predicted
context
model

Predicted
independent-

cue model

Old faces

4A
7A

15A
13A
5A

12B
2B

14B
10B

M

.97

.97

.92

.81

.72

.67

.72

.97

.95

.89

.94

.99
1.00
.72
.71

.68

.71
1.00
1.00

.95

.92

.96

.79

.71

.67

.76

.95
1.00

New faces

1A
6A
9A

11A

3B
8B

16B

.72

.98

.27

.39

.44

.77

.91

.78

.95

.30

.47

.45

.78

.88

.59
1.00
.14
.43

.49

.65

.94

teraction, F(90, 288) = 8.37, MSe - 1.00,
p< .0001. (Detailed accounts of these re-
sults will be offered in the Theoretical Anal-
ysis section.)

Speeded Classification

Table 6 summarizes the data from the
speeded-classification phase of the experi-
ment. Average correct reaction times are
given for each face for each instructional
condition, with corresponding error rates.
The pattern of results is by now a familiar
one. There are instructional differences in
the relative difficulty of faces—for example,
Faces 2 and 13, the two exceptions, are the
most difficult only in the rule-plus-exception
condition. And consistent with the context
model, once more Face 7 resulted in better
performance—faster reaction times and
fewer errors—than Face 4 in all instruc-
tional conditions. Again, this effect was
modest but consistent.



STRATEGIES AND CLASSIFICATION LEARNING 249

Table 4
Observed and Predicted Proportions of Correct
Categorizations for Each Face During
Transfer: Rule-Plus-Exception Instructions

Face
number

and
category

label

4A
7A

ISA
13A
5A

12B
2B

14B
10B

M

1A
6A
9A

11A

3B
SB

16B

Observed

Old

.89

.94

.94

.72

.78

.73

.70

.91

.95

.84

New

.45

.88

.08

.75

.80

.42

.88

Proportions

Predicted
context
model

faces

.91

.97

.99

.67

.74

.72

.61

.96

.98

faces

.50

.94

.20

.79

.80

.48

.92

Predicted
independent-

cue model

.92

.91

.98

.68

.84

.82

.66

.92
1.00

.41
1.00
.16
.69

.72

.44

.97

Statistical tests confirm the above impres-
sions. Separate analyses of variance were
conducted on reaction times and errors. For
the reaction times, there were significant
effects of instructions, F(2, 48) =13.72,
MSe = 2.21, /x.OOl; faces, F(8, 384) =
17.93, MSe = .20, p<.0001; and the In-
structions X Faces interaction, F(16,
384) = 3.09, MSe = .20, p < .0001. For er-
rors, there were significant effects of faces,
F(8, 384) = 38.06, MSe = .79, /x.OOOl,
and of the Faces X Instructions interaction,
F(16, 384) = 2.63, M5e = .79, /x.OOl.
Also, the three-way Instructions X Faces X
Randomizations interaction was marginally
significant, F(120, 384) = 1.30, M5e = .79,
p < .05. Planned t tests on Faces 4 and 7
indicated that the latter produced fewer er-
rors, r(95) = 3.18, /x.Ol, and faster re-
sponding, f(95) = 1.91, p < .06.

Theoretical Analysis
Although the guideline comparison of

Face 4 with Face 7 uniformly favored the

Table 5
Observed and Predicted Proportions of Correct
Categorizations for Each Face During
Transfer: Prototype Instructions

Face
niimhprI1UI11UC1

and
category

label

4A
7A

15A
13A
5A

12B
2B

14B
10B

M

1A
6A
9A

11A

3B
8B

16B

Observed

Old

.77

.97

.98

.70

.60

.45

.72

.83

.87

.79

New

.73

.87

.28

.52

.35

.78

.88

Proportions

Predicted
context
model

faces

.83

.89

.93

.74

.57

.47

.70

.85

.91

faces

.77

.89

.28

.46

.40

.74

.85

Predicted
independent-

cue model

.84

.92

.98

.77

.52

.51

.75

.84
1.00

.72
1.00
.20
.44

.46

.74

.98

context model, it is also important to see how
the contending models fit the transfer data
quantitatively. For the context model pre-

Table 6
Mean Correct Reaction Times (RT; in msec)
for Each Old Face During Speeded
Classification as a Function of Instructions

Standard

number RT

4 1.11
5 1.34
7

13
15

2
10
12

.08

.27

.07

.30

.08

.37
14 1.13
M 1.19

ER

.05

.14

.03

.09

.02

.12

.03

.19

.06

.08

Rule-plus-
exception

RT

1.27
1.61
1.21
1.87a

1.31

.97"

.42

.58

.34

.51

ER

.03

.11

.01

.15

.01

.20

.02

.10

.04

.07

Prototype

RT

1.92
2.13
1.69
2.12
1.54

1.91
1.64
2.29
1.85
1.90

ER

.07

.18

.04

.14

.04

.12

.03

.16

.06

.09

Note. ER = error rate.
a Stimuli that were exceptions to the rule.
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dictions concerning transfer can be analyzed
in terms of which exemplars are likely to be
retrieved when any particular face is pre-
sented as a probe. It is assumed that the
probability of assigning a particular probe
face to Category A(B) is equal to the sum
of the similarities of that face to each of the
stored exemplars of A(B), divided by the
sum of the similarities of that face to each
of the stored exemplars of both categories
(Medin & Schaffer, 1978).4 The similarity
between a probe face and an exemplar is
determined by a multiplicative combination
rule. More precisely, the model has four pa-
rameters (each ranging between 0 and 1,
with 1 designating maximum similarity)
that correspond to the similarity parameters
for the values of the four attributes used in
this experiment; for example, the parameter
for eye height specifies the similarity be-
tween the two different values of this attri-
bute. And similarity between two items is
determined by multiplying the relevant pa-
rameters.

Quantitative predictions of the general in-
dependent-cue model (including the proto-
type model as a special case) require some
additional assumptions. Following Medin
and Schaffer's (1978) treatment of indepen-
dent-cue theory, we assume that associated
with each attribute is some weight param-
eter reflecting the importance of that attri-
bute in categorization. If Weh, Wes, Wnl, and
Wmh are the weight parameters associated
with eye height, eye separation, nose length,
and mouth height, respectively, then the
probability that a particular face will be
classified as an A is equal to the relative
weight of values consistent with Category A.
For example, the probability that a face with
values 1010 would be called an A is
(Weh + Wnl)/(Weh + Wes + Wnl + Wmh).
Since we are working with ratios, there are
really only three independent paremeters,
assuming the parameters sum to one. In ad-
dition, in the case of old faces, we will as-
sume that transfer performance may be
based on specific exemplar information. This
probability is represented by a parameter S.
Since 1010 is a face used in training (Face
7), the probability of its being classified as
an A would be equal to S + (1.0 - S) X
(Weh + Wn,)/(Weh + Wra + Wnl + Wmh).

Both the general independent-cue model
and the context model thus have four free
parameters to be used in fitting the data.
These parameters were separately estimated
(by minimizing least squares) for each of the
three instructional conditions. The goal of
both models is to describe the transfer data
from the different instructional conditions
in terms of only parameter changes. The
predictions from two models are shown in
Tables 3, 4, and 5. Both models do a fair job
of capturing the main trends in the data, but
the context model seems to provide better
quantitative predictions. Some evidence for
the latter's superiority is presented in Table
7. The table gives three measures of each
model's goodness-of-fit—average absolute
deviation, sum of squared deviations, and
rank order correlation between predicted
and observed classification accuracy—and
all favor the context model.

To obtain a more precise comparison of
how well the two models fit the data, chi-
square tests were computed for the three
experiments. In these tests all cases in which
the expected number of responses was less
than five were lumped into a single cell. For
the independent-cue model, x2(31) = 194.4,
p < .001, which is highly significant; for the
context model, x2(33) = 47.3,p ^ .05, which
is not quite statistically significant. The dif-
ference in chi-square values provides an in-
dex of relative accuracy of the two models
and this difference, x2U) = 147.1, is highly
significant, (p < .001). (Technically this test
requires that the component chi-squares
have the same degrees of freedom, but the
fact that there were fewer degrees of free-
dom associated with the independent-cue
model should, if anything, favor this model.)

The parameter values associated with
these predictions are shown in Table 8. The
parameter constraints are fairly tight in that
values more than a few percentage points

4 As Medin and Schaffer (1978) noted, the idea is not
that all stored patterns are accessed by each probe but,
rather, that the similarity parameters determine which
patterns are likely to be accessed by the probe. The
particular ratio rule is already an approximation, since
similarity parameters would be expected to differ for
individual subjects. The best defense of the response rule
is that it is a fair approximation and that it seems to
work.
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Table 7
Statistics for Evaluating Goodness of Fit of Models Applied to Transfer Categorization Data

Average absolute
deviation

Instructional
condition

Standard
Rule-plus-exception
Prototype

Context

.036

.048

.038

Independent
cue

.048

.055

.072

S deviations squared

Context

.032

.049

.028

Independent
cue

.063

.062

.114

Rank-order correlations

Context

+.90
+.98
+.96

Independent
cue

+.90
+.87
+.88

away yield substantially poorer fits for both
models. Consider first the parameters for the
context model. Here the smaller the simi-
larity parameter, the more salient the di-
mension. Note that in the rule-plus-excep-
tion condition, the similarity parameter for
the dimension of nose length is 0, which is
consistent with the instructions, making this
attribute salient. (There is no parameter for
specific item information, since performance
is assumed to be exclusively based on ex-
emplar retrieval.) Most important, note that
the parameters for standard and rule-plus-
exception instructions are generally smaller
than those with prototype instructions. This
suggests that subjects who had either stan-
dard or rule-plus-exception instructions were
more likely to store distinctive information
about the attributes of exemplars than sub-
jects who had prototype instructions. And
this accounts for why the former two instruc-
tional conditions led to better overall per-
formance than did prototype instructions.
Similarly, the changes in parameter values
with instructions account for many of the
interactions we obtained between faces and
instructions. As one example, Face 12 was
categorized more efficiently with rule-plus-
exception than prototype instructions be-
cause (a) under the former instructions nose
length is more salient and (b) correct cate-
gorization of this face hinges critically on
the nose-length attribute (see Table 1).

For the independent-cue model, the greater
the parameter value associated with an at-
tribute, the greater its weight or salience.
Therefore these values generally should be
and are negatively correlated with the sim-
ilarity parameters of the context model. The
parameter values for specific exemplar in-
formation raise a problem for the indepen-

dent-cue model. In two of the three instruc-
tional conditions this value is high (.42). This
leads one to ask why old-new recognition
was so poor, and why it was not poorer with
prototype instructions than with the other
two conditions. That is, if there is informa-
tion that identifies specific exemplars during
classification, then that same information
should have mediated old-new recognition.
The fact that it did not casts further doubt
on the independent-cue model, at least the
versions that include specific item informa-
tion. We also tried fitting the data with a
variation of the independent-cue model that
did not include specific item information but
assumed that there was some probability, p,
that the summary representation (e.g, pro-
totype) had not been developed, in which
case it was assumed that subjects were
forced to guess. This variation of the model
produced markedly worse fits to the data
mainly because performance on old face pat-
terns was too good relative to performance
on new faces, a result that the modified
model cannot predict.

A Comment About Degree of Learning

The question arises about whether there
were any systematic differences between
learners and nonlearners, or differences as
a function of stage of learning. For example,
it is conceivable that the independent-cue
model describes performance accurately only
early in learning, whereas the context model
might be more accurate at later stages of
learning. The data give little support to this
idea. The relative difficulty of Faces 4 and
7 did not show any noticeable interaction
with practice, and Face 7 was easier than
Face 4 for both learners (those who met the
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Table 8
Best Fitting Parameter Values for the Two Models

Dimension

Standard instructions
Context
Independent cue

Rule-plus-exception instructions
Context
Independent cue

Prototype instructions
Context
Independent cue

Eye
height

.01

.50

.15

.28

.05

.53

Eye
separation

.11

.06

.37

.03

.62

.02

Nose

.07

.36

.00

.55

.37

.26

Mouth

.40

.08

.41

.13

.48

.18

Specific
item (S)

.42

.42

.11

criterion of one errorless run in initial learn-
ing) and nonlearners. Overall, nonlearners
averaged .77 more errors on Face 4 than
Face 7 during learning, t(59) = 1.72, p <
.10, and learners averaged 1.22 more errors
on Face 4, f(35) = 2.69, p < .05. The larger
difference for learners is to be expected,
since differences should not begin to appear
until at least a modest amount of learning
has taken place. Finally, informal attempts
to fit the transfer performance of learners
and nonlearners separately suggest that dif-
ferences can be fairly accurately described
simply in terms of differences in the param-
eters of the context model (the similarity
parameters for nonlearners are higher).

Although some learning is needed before
differences between Faces 4 and 7 are de-
tectable, the relative difficulty of the two
faces did not interact with stage of practice
in any way that suggests that the context
model describes performance at one stage
of learning and independent-cue models are
correct for a different stage. Breaking the
32 original-learning trials into four blocks
(of eight trials each) yielded an average
number of errors of 2.06, 1.72, 1.08, and .84
for Face 4 and an average of 2.02, 1.24, .90
and .66 for Face 7. Thus Face 7 led to better
performance than Face 4 on each block.

Discussion
The main results are easy to describe. The

instructional variations produced large dif-
ferences in the pattern of errors, reaction
time, and transfer performance. There were
strong interactions of instructional condi-
tions with particular faces. Yet certain re-
lationships in the data held across all con-

ditions, relationships that were accurately
described by the context model. Further-
more, this model provided a good account
of many of the instructionally induced dif-
ferences simply in terms of variations in the
similarity parameters of the attributes. No
new or special processes were required for
the different conditions, and the context
model fit the data better than an indepen-
dent-cue model in each condition. At least
for the present studies, instructional manip-
ulations influence the representations but not
the basic processes operating on them. De-
spite the variations in performance for each
of the instructional conditions, performance
was more in line with interactive-cue models
than with models assuming that information
is combined in an additive and independent
manner. This raises the possibility that it
may not be necessary for a new process
model to be developed for each alternative
strategy a person might employ. One might
opt for formulating process models on a level
at which they can capture the relations in
the data that are invariant over strategy.
There is little point in speculating about the
viability of extending the context model to
still other strategy variations, but we know
from the present study that at least some
degree of generality can be achieved even
when experimental manipulations dramati-
cally alter many details of performance.

As noted earlier one should also be cau-
tious about generalizing the present results
to different stimuli and different category
structures, and at best the present results
should be taken as suggestive. Still there is
evidence that the advantage of interactive
models over independent-cue models could
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have some generality. The Medin and Schaf-
fer (1978) results held across both face and
geometric stimuli and across at least modest
variations in category structure. In none of
these experiments, however, has the number
of alternative training stimuli been very
large. In a recent series of studies reported
by Medin (Note 2), category size was varied
in a major way. These experiments com-
pared the difficulty of learning categories
that either were or were not linearly sepa-
rable. Independent-cue models predict that
with other factors held constant, the linearly
separable task should be easier. In different
experiments the stimulus set was either small
or unlimited (no stimulus was ever re-
peated). In neither case was there any evi-
dence that the linearly separable task was
easier, contrary to independent-cue models.

The present approach to the role of strat-
egies in learning departs from usual prac-
tices. That is, typically attention is focused
directly on strategies rather than on the by-
products associated with the use of strate-
gies. And usually one is confronted with, and
takes as the appropriate task, addressing the
diversity and flexibility of strategies. By con-
centrating on the representations that result
from the use of strategies, attention is called
to the commonalities underlying perfor-
mance. The present data are consistent with
the idea that a basic property of categori-
zation is that probes act as retrieval cues to
access representations similar to the probe.
This sensitivity to similarity acts as an ef-
ficient mechanism for categorization by
analogy.

Brooks (1978) has argued that analogical
reasoning has been given short shrift in anal-
yses of categorization learning in favor of
attention to the more analytical thinking
associated with strategies and hypothesis
testing. Indeed, there is some evidence that
for complex category structures, mastery of
the category is accomplished better in the
absence of strategies than in their presence
(Kossan, 1978; Reber, 1969,1976). The con-
text model suggests that analytical and an-

alogical processes should not be viewed as
mutually exclusive alternatives. Rather, ac-
cess to stored representations may always be
by means of an essentially analogical pro-
cess, but the character of the representations
may be modified by analytical strategies em-
ployed during learning.
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