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Time Course of Comparison

Robert L. Goldstone and Douglas L. Medin

Similarity as interactive activation and mapping (SIAM), a model of the dynamic course of
similarity comparisons, is presented. According to SIAM, when structured scenes are compared,
the parts of one scene must be aligned, or placed in correspondence, with the parts from the other
scene. Emerging correspondences influence each other in a manner such that, with sufficient time,
the strongest correspondences are those that are globally consistent with other correspondences.
Relative to globally inconsistent feature matches, globally consistent feature matches influence
similarity more when greater amounts of time are given for a comparison. A common underlying
process model of scene alignment accounts for commonalities between different task conditions.
Differences between task conditions are accounted for by principled parametric variation within
the model.

The similarity of some situations is immediately apparent.
The basis for the similarity of The Odyssey and The Iliad is clear
at once (both are Greek epic poems). Recognizing the common-
alities between The Odyssey and The Wizard ofOz, however, is a
relatively slow process. The time course of similarity assess-
ments provides a useful tool for investigating the process by
which entities are compared. These time course data inform
questions concerning how entities are mentally represented
and have important implications for theories of similarity. In
this article, we present a model of similarity comparison that
makes specific time course predictions, which were tested in
three experiments. Before turning to that model, we first
outline the need for a consideration of similarity processes.

Process Models of Similarity

Most traditional models of similarity have not addressed the
temporal aspects of processing. Instead, they have modeled
the similarity of two things by algebraic formulas. In the basic
description of both featural (Tversky, 1977) and dimensional
(Carroll & Wish, 1974; Torgerson, 1965) models, very little
attention is paid to the actual mechanisms by which similarity
is computed (although Tversky did discuss processing prin-
ciples that fix some terms). In both of these approaches, there
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are no obvious grounds for predicting qualitative shifts in
similarity as processing time increases. In the model we
present in this article, qualitative shifts are expected: Early in
processing, local matches strongly influence similarity; with
time, global consistency becomes more important. We argue
that the process by which correspondences between two
entities are established is nontrivial and importantly constrains
models of similarity.

It is not surprising that featural and multidimensional
scaling models have paid little attention to the comparison
process. After all, measurements of similarity range from
direct ratings or judgments to perceptual and memorial confu-
sions (the more similar two things are, the more confusable
they should be). Instead of expecting some generic comparison
process, one might anticipate task-specific processing mecha-
nisms. Consider, for example, same-different reaction times as
an index of similarity. The assumption is that the more similar
two things are, the longer it will take to say that the things are
different. Several process models of these tasks have been
proposed (for reviews, see Farell, 1985; Nickerson, 1972). One
candidate model (Egeth, 1966) of same-different judgments
posits that stimuli are compared attribute by attribute in a
serial fashion and that the process is terminated by the
detection of a difference with respect to any relevant attribute.
This model is sometimes augmented by a fast "identity
reporter" that emits a response if the stimuli are the same,
based on wholistic cues (Bamber, 1969).

Other process models are relevant to direct similarity
ratings. According to the "anchoring and adjustment" process
(Lopes & Johnson, 1982; Tversky & Kahneman, 1974), sub-
jects anchor their judgment at the similarity value associated
with some salient dimension. The similarity rating is then
adjusted (often insufficiently) by the other dimensions such
that after each adjustment the new similarity lies between the
old similarity and the similarity value of the dimension most
recently considered. Parducci's (1965; also see Krumhansl,
1978) range-frequency theory incorporates two processing
principles: (a) that people who are asked to assign a numeric
value as a rating tend to divide the range into a fixed number of
intervals of equal breadth and (b) that people tend to establish
intervals that are used with equal frequency. If many events fall
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within a particular interval, finer discriminations are made and
the interval is subdivided.

It should be clear that some of the processes hypothesized
for similarity ratings are of limited relevance to a same-
different task, and vice versa. Given that different processes
are involved in tasks that all purportedly measure similarity,
one may suggest that the most powerful and useful generaliza-
tions about similarity should be stated at an abstract, relatively
process-independent level. Many researchers do find a high
degree of correlation between similarity as measured by
same-different judgments and similarity as measured by rat-
ings (Corter, 1987; Getty, Swets, Swets, & Green, 1979;
Podgorny & Garner, 1979; Sergent & Takane, 1987); however,
these same researchers find that the two tasks are not
completely sensitive to the same information (see also Beck,
1966). Few explanations have been put forth to explain the
dissociations between the measures.

An alternative strategy to ignoring task differences (or
treating different tasks as unrelated) is to develop a single
unified model of similarity that accounts for both similarities
and differences among tasks. Although the argument against a
single, generic comparison process is fairly compelling, devel-
oping such a model may play an extremely useful function in
linking these various measures of similarity. Indeed, we have
been surprised at just how successful a model using a single
mechanism to predict both similarity judgments and same-
different reaction times can be. The key idea is that compari-
son processes unfold over time and same-different tasks
typically involve shorter time periods than do similarity ratings.

The model we present in the next section provides an
account for the strong correlation between similarity measures
and also their systematic dissociation. According to this model,
different measures of similarity are correlated to the extent
that the tasks all require a process that places the parts of the
compared entities into alignment. Dissociations between simi-
larity measures are accounted for by variations in task-relevant
parameters. In specific, different tasks can be modeled by
performing different amounts of processing. Tasks that are
performed quickly by subjects are modeled by allowing fewer
processing cycles in a computational model.

Similarity as Interactive Activation and Mapping

Brief Description of the Model

We recently developed the similarity as interactive activa-
tion and mapping (SIAM) model of the dynamic course of
similarity comparisons as a model of how people judge the
similarity of structured scenes (Goldstone, 1994; Goldstone &
Medin, in press). SIAM shares architectural commonalities
with McClelland and Rumelhart's (1981) interactive activation
model of word perception and is highly related to the structure
mapping engine (SME) (Falkenhainer, Forbus, & Gentner,
1989) and the analogical constraint mapping engine (ACME)
(Holyoak & Thagard, 1989) models of analogical reasoning.
The primary assumption of SIAM is that determining the
similarity of two scenes involves placing the scenes' compo-
nents into alignment or correspondence (e.g., see Gentner
1983,1989; Markman & Gentner, 1993, Medin, Goldstone, &
Gentner, 1993). Similarity is determined by a process of inter-

active activation among feature, object, and role correspon-
dences. The degree to which features from two scenes are
placed in correspondence depends on how strongly their
objects are placed in correspondence. Reciprocally, how
strongly two objects are placed in correspondence depends on
the correspondence strength of their features. A similar
pattern of simultaneous mutual influence occurs between
objects and their roles.

SIAM's network architecture is composed of nodes that
excite and inhibit each other. A node represents the hypothesis
that two entities correspond to one another in two scenes. A
feature-to-feature node represents the hypothesis that two
features correspond to each other. There is one node for every
pair of features that belong to the same dimension; if each
scene has O objects with F features each, there are O2F
feature-to-feature nodes. SIAM presupposes both that the
object membership of features is known and that cross-
dimensional featural alignments are not considered. These two
assumptions are convenient simplifications. For example, it
may be that the object membership of features is driven by
bindings to spatial locations (e.g., Nissen, 1985). Our idea is
that such bindings take place on a time scale much shorter than
the situations we model, although SIAM could readily be
extended in this direction. There is other work (e.g., Melara &
Marks, 1990) that demonstrates that cross-dimensional feature
correspondences are considered and do influence judgments.
For example, a loud tone and a bright light might be aligned.
So far, we have not attempted to extend SIAM to cross-
dimensional matches, in part because we wish to avoid having
O2F2 feature-to-feature nodes.

Even the requirement of O2F feature-to-feature nodes may
seem overly profligate. A version of SIAM has been con-
structed that creates feature-to-feature nodes only when a
featural correspondence has been noticed by the system.
Although this version typically creates a number of feature-to-
feature nodes that increases linearly with OF, it is not
considered here because its processing mechanism is far more
complicated.

Network activity starts by features being placed in correspon-
dence according to their similarity. As the activation of a
feature-to-feature node increases, the two features referenced
by the node are placed in stronger correspondence. After this
occurs, SIAM begins to place objects into correspondence that
are consistent with the feature correspondences. Object-to-
object nodes represent the hypothesis that two objects corre-
spond. As objects begin to be placed in correspondence,
activation is fed back down to the feature mismatches that are
consistent with the object alignments. In this way, object
matches influence activation of feature matches and feature
matches influence the activation of object matches concur-
rently. Role-to-role nodes operate to place scene parts in
correspondence that play the same role within a scene. Role
correspondences influence object correspondences, and vice
versa. (For empirical justifications of the inclusion of roles in
the presentation, see Gentner, 1983, 1989; Goldstone, Gen-
tner, & Medin, 1989; Goldstone, Medin, & Gentner, 1991.)

Activation spreads in SIAM by two principles: (a) Nodes
that are consistent with one another send excitatory activation
to each other, and (b) nodes that are inconsistent inhibit one
another. Nodes are inconsistent if they yield many-to-one
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mappings, and are consistent otherwise. For example, there is
a many-to-one mapping between AB and AA; the first element
of AB maps onto both elements of AA. As such, the object-to-
object node that represents the hypothesis "First element of
AB corresponds to first element of AA" inhibits the "First
element of AB corresponds to second element of AA" object-
to-object node and vice versa. An object-to-object node that
places A and B into correspondence excites all feature-to-
feature nodes that put A's features into correspondence with
B's features, and vice versa.

Scenes are described to SIAM in terms of relations that take
objects as arguments, and objects that contain feature slots
that are filled with particular feature values. On each time
cycle, activation spreads between nodes. The network's pat-
tern of activation determines both the similarity of the scenes
and the alignment of the scenes' features, objects, and relation
arguments. With time, nodes that have high activity will be
weighted highly in the similarity assessment and their elements
will tend to be placed in alignment.

Behavioral Characteristics of the Model

The details of SIAM's implementation are presented else-
where (Goldstone, 1994). For the present purposes, we focus
on several important features of SIAM's operation. First,
SIAM predicts that feature matches increase similarity more if
they belong to objects that correspond to each other. Two
scenes may have a feature match between noncorresponding
objects. For example, in Scene A, a boy with a white shirt
throws a football; in Scene B, a boy with a brown shirt throws a
baseball. The matching "brown" feature between the football
in Scene A and the boy's shirt in Scene B is a match between
noncorresponding objects. The objects do not correspond
because they are featurally dissimilar and because they play
different roles in the scenes. Such a feature match is called a
match out of place (MOP). Conversely, a feature match
between corresponding objects is called a match in place
(MIP). If both of the boys have green pants, this shared color
feature is a MIP. SIAM predicts that MIPs increase scene
similarity more than MOPs do because they receive excitation
from strong object-to-object correspondences. Because of the
boys' featural and relational similarity, the node that places the
two boys in correspondence is highly activated. This object-to-
object node then sends activation back down to the nodes that
place the boys' features into correspondence. The influence of
a feature match (or mismatch) in a similarity assessment is
directly related to its activation level.

In previous applications, SIAM has successfully described a
number of detailed phenomena concerning the influences of
MIPs and MOPs and their distribution on similarity judgments
(Goldstone, 1994). SIAM has thus far been used to model
similarity ratings, category inferences, mapping judgments,
feature detection, and ease-of-comparison judgments. In this
article, we describe the application of SIAM to indirect
measures of similarity; this application required a consider-
ation of the time course of alignment.

Experiment 1

SIAM is unique among models of similarity in being dy-
namic. As SIAM executes more cycles of activation adjust-

ment, feature-to-feature nodes become increasingly influ-
enced by object correspondences. At first, how strongly two
features correspond to each other depends mostly on the
features' similarity; two features tend to be put into correspon-
dence if they are identical or highly similar. With more time,
feature correspondences depend increasingly on object corre-
spondences. Specifically, features tend to be placed in strong
correspondence if they belong to objects that are placed in
correspondence. In turn, objects are placed in correspondence
if they are featurally similar to each other. After several cycles
have passed, object correspondences reflect objects' featural
similarity and feed activation back down to the feature
correspondences with which they are consistent.

One prediction of this temporal process is that the relative
importance of MIPs compared with MOPs increases with
processing time. MIPs and MOPs are originally equally salient,
but object correspondences send more activation to MIPs than
to MOPs. That is, feature matches between corresponding
objects show more of a benefit from object correspondences
than do feature matches between noncorresponding objects.

In Experiment 1, we tested the influence of time on feature
match salience by using a same-different judgment task with a
deadline. Subjects had to decide whether two scenes contained
the same butterflies within a specified time limit. The rate of
incorrect responses on "different" trials was assumed to be
directly related to the scenes' similarity. Each scene was
composed of two butterflies, and each butterfly had four
critical features. Sample displays are shown in Figure 1. A
symbolic representation is shown below each of the butterflies.
For example, the display in Figure 1A contains the butterflies
AAAA and BBBB, with the letters referring to different values
along the four dimensions (body shading, head type, tail type,
and wing shading). The butterflies on the right in Figure 1A
are identical to those on the left, with the exception of the body
shading of one butterfly. Because the butterfly BBBB is not
identical to BBBD, a subject should respond that the scenes
have different butterflies.

Both Figure 1A and IB show displays that have seven
feature matches. In Figure 1A, all seven feature matches
appear on butterflies that are in true correspondence; conse-
quently, the display has seven MIPs. Butterflies are in true
correspondence if their correspondence is part of the consis-
tent set of butterfly correspondences that maximizes the
number of MIPs. Butterfly correspondences are consistent if
they do not create a many-to-one mapping between butterflies.
In Figure IB, six feature matches are MIPs, and one feature
match is a MOP. Butterfly AAAB corresponds to AAAA, but
AAAB also has a feature match in common with BBBB (they
both have spotted bodies).

The following empirical questions were addressed in Experi-
ment 1: Are the scenes in Figure IB as similar to each other as
the scenes in Figure 1A are? How do the displays' relative
similarity vary with processing time? SIAM predicted that the
similarity of the scenes in Figure 1A would increase relative to
the similarity of Figure IB's scenes with time. MIPS, relative to
MOPs, should increase similarity more as object correspon-
dences begin to influence feature correspondences. Experi-
ment 1 compared displays that varied systematically in their
number of MIPs and MOPs. Each of the displays was pre-
sented under three different deadline conditions. The similar-
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AAAA BBBD

BBBB

7 MIPs
OMOP

AAAA

AAAA BBBD

BBBB

6 MIPs
1 MOP

B
AAAB

Figure 1. Two sample displays from Experiment 1. In Panel A, two butterflies are identical (four matches
in place [MIPs]), and two butterflies agree on three of four features (three MIPs). In Panel B,
corresponding butterflies share six features (six MIPs), and noncorresponding butterflies share one
feature (one match out of place [MOP]—the spotted body pattern).

ity of each display, measured by the percentage of false "same"
judgments, was predicted to be an interactive function of
deadline and distribution of MIPs and MOPs.

Method

Subjects. Thirty-three undergraduate students from the University
of Michigan served as subjects in order to fulfill a course requirement.

Materials. Each display contained two scenes divided by a 1-cm
black line. Scenes were composed of two butterflies, which in turn
were composed of four features: wing shading (22 different values,
including striped, spotted, checkerboard, black, brick, etc.), head style
(triangle, square, circle, or M-shaped); tail style (radiating lines,
zigzag, cross lines, or line with ball); and body shading (the same range
of values as wing shading). None of the wing shadings on any of the
four butterflies had the same value as the body shading of any
butterfly. The display area was 17 cm high x 21 cm across. Each
individual butterfly was approximately 6 cm x 4 cm. Viewing distance
was not controlled but was approximately 60 cm.

Three different spatial layouts were used. In the same-positions
layout, butterflies that corresponded to each other (according to their
feature overlap) were placed if the same relative locations in their
respective scenes (abstractly, ^B -» AB). In the opposite-positions
layout butterflies that did not correspond to each other were placed in
the same relative locations (abstractly, AB -» BA). Figure 1 shows
butterflies in an opposite-position layout. In Figure 1A, butterfly
BBBB corresponds to butterfly BBBD, but BBBB is in the same
relative spatial location as butterfly AAAA. In the unrelated-positions
layout, neither of the butterflies of one scene had the same relative
location as either of the butterflies of the other scene. Within each
scene, the two butterflies were always placed diagonal to each other,

each butterfly occupying one of four locations (upper left corner,
upper right corner, lower left corner, and lower right corner).

Design. Table 1 lists the 13 different displays presented to subjects.
Each display differed in terms of its number of MIPs and MOPs. The
butterflies in one scene (the initial scene) can be represented by
AAAA and BBBB, with each letter representing a particular value on
one of the four butterfly dimensions. The 13 displays changed features
from the initial scene to create the other scene (the changed scene).
For example, the changed scene's butterflies for Method 13 are AAAA
and BBBD, signifying that the initial and changed scenes differed only
on a single dimension value. Figure 1A is an instantiation of Method
13; the difference between the scenes was that the spotted body of one
butterfly became scaly in the other scene. Figure IB depicts Method
11; BBBD differed from BBBB by one value (spotted body became
scaly), AAAB differed from AAAA by one value (striped body became
spotted), and there was a single MOP between BBBB and AAAB
(they both had spotted bodies).

Procedure. The subjects' task was to press a key with one hand if
the butterflies in one scene were the same as the butterflies in the
other scene and to press a key with the other hand if the two scenes'
butterflies were different. They were instructed to ignore butterfly
positions and base their decision on the features of the butterflies. If
the subject did not respond S or D within the time indicated by the
deadline, "OVERTIME" appeared on the screen. Otherwise, either a
check or an X appeared on the screen, depending on whether the
subject's response was correct or incorrect. After 2 s, the screen was
erased. After another second, the next trial commenced.

Each subject was given a total of 494 trials. On half of these trials,
each of the butterflies in one scene matched a featurally identical
butterfly in the other scene. These comprised the "same" trials. The
remaining trials consisted of 19 repetitions of each of the 13 displays.
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Table 1
Design, Results, and Simulations (Error and Overtime Rate) of Experiment 1

Method no.

changed scene8

1: AABB/BBAA
2: AABC/BBAA
3: AABC/BBAD
4: AABC/BBDD
5: AACC/BBDD
6: AAAB/BBAA
7: AAAB/BBDA
8: AAAB/BBDD
9: AAAC/BBDD

10: AAAB/BBBA
11: AAAB/BBBD
12: AAAC/BBBD
13: AAAA/BBBD

No. of
MOPs

4
3
2
1
0
3
2
1
0
2
1
0
0

No. of
MIPs

4
4
4
4
4
5
5
5
5
6
6
6
7

O

60
62
53
52
43
70
59
55
53
66
62
57
74

Short

M

63
55
48
41
33
69
62
55
47
76
69
61
76

S

60
56
55
46
42
68
66
53
46
67
61
59
75

O

27
20
13
20
15
31
26
25
31
38
39
32
58

Deadline

Medium

M

21
20
19
18
18
30
30
29
28
40
39
38
48

5

19
21
14
21
21
32
28
24
30
38
38
33
60

O

20
16
12
9
6

18
16
18
14
38
36
30
53

Long

M

15
14
14
13
13
23
23
22
22
32
31
31
40

S

13
18
12
11
6

24
19
24
17
31
28
31
46

Note. MOP = match out of place; MIP = match in place; O = observed percentage of incorrect
responses on "different" trials; M = predicted values from best fitting (seven parameter) linear regression;
and S = predicted values from the presented model of similarity as interactive activation and mapping.
aInitial scene was AAAA/BBBB.

One of these 19 repetitions was a practice block set at the slowest
deadline. The other 18 repetitions consisted of six blocks at each of the
three deadlines, randomly ordered. Short, medium, and long deadlines
corresponded to 1 s, 1.84 s, and 2.68 s. For these respective deadlines,
subjects were instructed that they would be required to make "VERY
fast responses," "moderately fast responses," and "fairly slow
responses."

Results

Both the main effect of match type (MIP vs. MOP) and the
interaction between match type and deadline were of interest.
Because of the deadline procedure, error responses rather
than response times were the most sensitive measure of
similarity. The analyses focused on incorrect responses on
"different" trials as a measure of similarity. Error rate and
overtime responses were combined to form a measure of the
total incorrect response rate. The analyses were not signifi-
cantly changed when error trials and overtime trials were
analyzed separately.

There was a clear influence of both MIPs and MOPs on
similarity as measured by incorrect responses on "different"
trials. One simple method of analyzing the data was to extract
the 3 x 3 factorial design embedded within the experiment's
design. As such, Displays 3-5 and 7-12 were analyzed because
they constituted every level of MIPs between 4 and 6, com-
bined with every level of MOPs between zero and two.
Averaging over number of MOPs and deadline, 4 MIPs = 24%
incorrect responses, 5 MIPs = 33%, and 6 MIPs = 45%, F(2,
64) = 7.1, MSe = 4.5,p < .05. For MOPs, 0 MOPs = 31%, 1
MOP = 35%, and 2 MOPs = 36%, F(2, 64) = 3.6, MSe = 6.1,
p < .05. Subjects were more likely to call two scenes the same
incorrectly when the scenes contained many MIPs and MOPs.
MIPs were much more influential than MOPs in determining
error rates. Increasing the number of MIPs by two increased
the rate of incorrect answers by 21 percentage points, com-
pared with a 5 percentage point increase obtained by increas-
ing the number of MOPs by two.

There was a reliable interaction between both MIPs and
MOPs and deadline. As subjects were given more time to
respond, the influence of MIPs increased and the influence of
MOPs decreased. The interaction between number of MOPs
and deadline is shown in Figure 2, F(4,128) = 2.9, MSe = 8.9,
p < .05. The shortest deadline showed the greatest sensitivity
to differences in the number of MOPs in a display. Two addi-
tional MOPs increased incorrect responses by 10%, as com-
pared with 4% for the longest deadline, F(l, 32) = 4.4, MSe =
6.2, p < .05. The interaction between number of MIPs and
deadline is shown in Figure 3, F(4,128) = 5.7, MSe = 6.3, p <
.05. The long and medium deadlines showed the greatest
sensitivity to MIPs, where sensitivity was measured by the
difference between displays that had 4 and 6 MIPs. At the
shortest deadline, the influence of two additional MIPs was
not significantly different from the influence of two additional
MOPs.

Reaction times were significantly greater for "same" re-
sponses (1.25 s) than for "different" responses (1.17 s), paired t
(32) = 2.9, p < .05. Correct "same" responses were fastest
when corresponding objects were placed in the same locations
(same location = 1.21 s, unrelated location = 1.25 s, and
opposite location = 1.28 s). "Same" error rate data reflect the
same trend (same location = 83% correct "same" responses,
unrelated location = 79%, and opposite location = 76%).
"Different" response speed and error rate were not signifi-
cantly affected by object location.

Discussion

Both MIPs and MOPs increased similarity, but MIPs in-
creased similarity more. Longer deadlines decreased the
influence of MOPs and increased the influence of MIPs on the
error rate measure of similarity. At the shortest deadline,
MIPs had only slightly more influence on similarity than
MOPs. At the longer deadlines, MOPs became much less
influential, and MIPs became more influential. A single MIP
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40-
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Deadline

0 1 2

Number of Matches Out of Place

Figure 2. Results of Experiment 1. The number of matches out of place had a greater influence on the
rate of incorrect "different" responses for short deadlines than for medium or long deadlines.

was always more influential than 2 MOPs at the longer
deadlines, but often 2 MOPs were more influential than 1MIP
at the shortest deadline.

SIAM's account of these results is that the influence of
object-to-object correspondences on feature-to-feature corre-
spondences increases with processing time. MIPs become
more important with time because they are matches that
belong to aligned objects. As subjects begin to place two

objects into correspondence, feature matches between the
objects receive more attention. At the same, feature matches
between unaligned objects receive less attention. The more
attention a particular feature match receives, the more it
influences similarity, when similarity is measured by the
percentage of trials in which different scenes are judged the
same.

If a model of similarity is to provide an account of the

70

60

&. so

I w
S 30-

Deadllne

4 5 6

Number of Matches In Place

Figure S. Results of Experiment 1. The number of matches in place had a greater influence on the rate of
incorrect "different" responses for long and medium deadlines than for short deadlines.
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BABA| |XXXB|
Base

Globally consistent matches kept Locally preferred matches kept

| X A B A | | X X X B |

A

|BABA| |XXXXl

B

Figure 4. Abstract design of stimuli used in Experiment 2. Each scene was composed of two objects with
four features (represented by letters). The target scene was compared with the base scene and with two
transformations of the base scene. If the mutual consistency of butterfly alignments was not taken into
account, the left butterfly of the base scene (BABA) corresponded to both butterflies from the target
scene. If the global consistency of object alignments was considered, the right butterfly of the target scene
was placed in optimal alignment with the right butterfly of the base scene.

same-different judgment task, it has to consider temporal
aspects of the task, and not simply the scenes' featural
descriptions. Process models such as SIAM have an advantage
over other models of similarity in this regard. SIAM is a
dynamic model; scene correspondences and similarity assess-
ments develop over time. The experimental manipulation of
deadlines has a natural analogue in SIAM—the number of
cycles of activation adjustment that SIAM completes. In the
Theoretical Analysis section of this article, we show that SIAM
gives a quantitative as well as a qualitative account of the
results of Experiment 1.

Experiment 2

Experiment 1 provided evidence that the influence of object
correspondences on feature correspondences increases with
time. Feature matches that are compatible with the optimal
object correspondences count more than feature matches that
are not, and this difference grows with processing time. In
Experiment 2, we explored whether there is an increased
influence of object correspondences on each other with time.
SIAM initially begins to place objects in correspondence on
the basis of their featural overlap; the more featural common-
alities two objects have, the more strongly they will be placed in
correspondence. However, the strength of an object correspon-
dence is also influenced by its consistency with other object

correspondences. If two objects from one scene correspond to
a single object in another scene, the two correspondences are
inconsistent and decrease each other's strength. SIAM pre-
dicts that object correspondences become increasingly influ-
enced by other object correspondences with time, as activation
between nodes spreads.

One prediction of this temporal processing is that feature
matches that are inconsistent with the set of globally consistent
correspondences tend to influence similarity less with time.
Globally consistent feature matches should become more
influential with time. Global consistency is determined by the
entire pattern of correspondences. A set of mappings is
globally consistent if it (a) yields only one-to-one mappings and
(b) maximizes the number of MlPs-matching features that
belong to corresponding entities.1

To test the influence of processing time on globally consis-
tent and inconsistent feature matches, we used Experiment l's
task and materials in Experiment 2. Subjects decided whether
two scenes contained the same butterflies within a specified
amount of time. Sample scenes and their symbolic representa-
tions are shown in Figure 4. The target scene was composed of

1 The second half of this definition is somewhat amended when roles
are included in the scene description.
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butterflies AAAA and BBBB, with the letters referring to
different values along the four dimensions.

The target scene was compared with a base scene and two
derivatives of the base scene. Both of the butterflies in the
target scene had more matching features in common with the
left butterfly than the right butterfly in the base scene. Thus, if
we were only constrained by the locally preferred mappings,
we would map both target butterflies onto the left butterfly in
the base scene. However, if the global consistency of object
mappings is maintained, then this many-to-one mapping is not
permitted. The best globally consistent mapping is to match
the left butterflies to each other, and the right butterflies to
each other. This consistent mapping yields three MIPs and two
MOPs. The only other consistent mapping (aligning the left
butterfly of one scene with the right butterfly of the other
scene) yields two MIPs and three MOPs. In short, BBBB (in
the target scene) corresponds to BABA (in the base scene) if
we consider only local feature matches, but BBBB corresponds
to XXXB if we consider the influence that object correspon-
dences have on each other.

As mentioned, the target scene was also compared with two
derivatives of the base scene. Each derivative differed from the
base scene by only a single feature. In Figure 4A, one of the
locally preferred matches is absent, leaving all of the globally
consistent matches intact. In Figure 4B, one of the globally
consistent matches is absent, preserving all of the locally
determined matches. The experimental question is, Which of
these two derivatives is more similar to the target? In other
words, does it matter more if a local or global match is
removed? SIAM predicts that the answer to this question
depends on timing. Early on, local matches are more impor-
tant; with increasing time, global matches should become more
important. The target and Figure 4B have four feature
matches between butterflies that are aligned on the basis of
local object-to-object similarity, but they have only two globally
consistent feature matches. The target and Figure 4A have
three locally determined matches and also three globally
consistent feature matches. If SIAM's prediction is valid, then
it should be possible to make either Figures 4A or 4B more
similar to the target butterfly by manipulating the amount of
time allowed for a response.

Method

Subjects. Thirty-three undergraduate students from the University
of Michigan served as subjects in order to fulfill a course requirement.

Materials. Displays consisted of the target scene and one of three
other scenes. The target scene is described by AAAA/BBJBB, signify-
ing a scene with two butterflies, each with four dimensions such that
the butterflies did not have any of the same dimension values. One of
the three scenes with which the target scene was compared was the
base scene, described by BABA/XXXB. Locally preferred and glo-
bally consistent object alignments were in conflict when the target and
base scenes were compared. If each butterfly's correspondence was
determined independently, then the butterfly characterized by BBBB
would most strongly correspond to BABA. BBBB had two matching
features in common with BABA and only one in common with XXXB.
As such, local object correspondences would place both AAAA and
BBBB into correspondence with BABA. However, if global consis-
tency was considered and many-to-one butterfly mappings were

suppressed, BBBB would most strongly correspond to XXXB. Glo-
bally, the mapping AAAA -• BABA, BBBB -» XXXB yields three
MIPs, whereas the mapping AAAA -• XXXB, BBBB -* BABA yields
only two MIPs. Thus, depending on whether AAAA's mapping
influenced BBBB's mapping, BBBB would be placed in correspon-
dence with either BABA (the locally preferred mapping) or XXXB
(the globally consistent mapping).

The other two scenes with which the target scene was compared
were identical with the base scene except that either one globally
consistent or one locally preferred feature match was removed. The
abstract description of the scene that kept all of the globally consistent
matches, removing one locally preferred match, is XABA/XXXB.
Going from the base scene to this scene, one B is changed into an X.
This change results in one less matching feature with the target, and
the matching feature that is lost belongs to an object that locally but
not globally corresponds to BBBB. Conversely, the third comparison
scene, BABA/XXXX, preserves all of the locally aligned matches but
removes one globally consistent mapping.

Butterfly position, dimension order, dimension values, scene loca-
tion, and display type were all randomized. Displays were presented
on Macintosh SE30 computers.

Procedure. The procedure was the same as in Experiment 1. The
subjects' task was to press a key with one hand if the butterflies of one
scene were the same as the butterflies of the other scene and to press a
key with the other hand if the two scenes' butterflies were different in
any feature.

Subjects were given 608 trials in all. On half these trials, each of the
butterflies of one scene matched a featurally identical butterfly in the
other scene. These were the "same" trials. The remaining trials
consisted of 19 repetitions of each of the three comparisons (target-
base, target-local match preserved, and target-global match pre-
served) and 13 filler trial displays. One of these 19 repetitions was a
practice block set at the slowest deadline. The other 18 repetitions
consisted of six blocks at each of three deadlines (1 s, 1.84 s, and 2.68
s), randomly ordered.

Results

The crossover interaction between deadline and type of
display is shown in Figure 5. The 3 x 3 interaction was
significant, F(4,128) = 3.5, MSe = 0.68, p < .05, as was the 3
(deadlines) x 2 (local vs. global matches kept) interaction,
F(2,64) = 4.4, MSe = 0.66,p < .05. When subjects were forced
to respond within a short deadline, the display that preserved
the locally preferred match was more often incorrectly re-
sponded to as "same" than was the display that preserved the
globally consistent match. The opposite effect was found when
subjects were given longer to respond. The following four
mean error rates were of particular interest: slow deadline/
global matches kept = 5%, slow deadline/local matches
kept = 3%, fast deadline/global matches kept = 18%, and fast
deadline/local matches kept = 21%. A planned comparison of
these four data showed a significant interaction between
deadline and type of scene on error rate, F(l, 128) = 4.16,
MSe = 6.3, p < .05. The overall times to correctly respond
"different" for the different displays were not significantly
different (base = 1.147 s, global match kept = 1.137 s, and
local match kept = 1.135 s).

In addition to the interaction between display type and
deadline, there was an interaction between butterfly position
and display type, using error rate on "different" trials as a
dependent measure, F(4,128) = 3.01, MSe = 0.58,p < .05. For
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Figure 5. Results of Experiment 2, At the slow deadline, the scene with more global matches preserved
was more confusable with the target scene. At the fast deadline, the scene with more local matches
preserved was more confusable with the target scene.

base, global-match-kept, and local-match-kept scenes, respec-
tively, the error rates were 15%, 17%, and 10% in the
same-positions displays; 14%, 9%, and 13% in the opposite-
positions displays; and 17%, 11%, and 10% in the unrelated-
positions displays. Scenes with preserved global matches were
more often incorrectly thought to be the same when (globally)
corresponding butterflies were in the same relative positions
than when they were in unrelated positions. Conversely, more
incorrect "same" judgments were made for scenes with pre-
served local matches when corresponding butterflies were
given unrelated, rather than the same, positions.

Discussion

Measuring similarity by the percentage of trials on which
scenes with different butterflies were judged to be the same,
the obtained results are consistent with SIAM's prediction.
More incorrect "same" judgments were found for short dead-
lines when local, as opposed to global, matches were pre-
served. More incorrect "same" judgments were found for the
longest deadline when global, as opposed to local, matches
were preserved. This is consistent with SIAM's dynamic
account of similarity. The influence of one object-to-object
mapping on another takes time to develop, and until it
develops, object-to-object mappings are largely determined by
feature-to-feature matches. Locally consistent matches are
more important than globally consistent matches for similarity
early in processing (fast deadline). Later in processing, glo-
bally consistent matches gain in importance relative to locally
consistent matches. It takes time to set up the influence that
one object-to-object mapping has on another object-to-object
mapping, and until this happens, error data show the influence
of two-to-one mappings. At first, both butterflies of the target
are mapped onto one butterfly of the other scene, but with
time the influence of one mapping redirects the other map-
ping.

SIAM also provides an account of the interaction between
butterfly positions and the preservation of local or global
matches. When corresponding butterflies are in corresponding
locations (same-positions displays), location information (rep-
resented by role-to-role nodes) bolsters globally consistent
object-to-object correspondences. When corresponding butter-
flies are placed in opposite locations (opposite-positions dis-
plays), location information hinders the development of the
globally consistent correspondences. As such, opposite-
positions displays are correctly predicted to show more of an
influence of locally determined object correspondences than
same-positions displays.

Experiment 1 indicated that, with time, objects are placed in
correspondence on the basis of their featural similarity and
object alignment influences the salience of feature matches.
Experiment 2 indicated that featural similarity cannot com-
pletely predict object correspondences. Objects tend to be
aligned if they share many features; however, object alignment
also depends on the similarity of other pairs of objects.

It might be expected that an account of the deadline results
could be provided without assuming object alignment, if it was
assumed that (a) both simple features and complex conjunc-
tions of features (e.g., striped body and checkered wings) are
represented, and (b) simple features are computed more
quickly than complex features. The first assumption has proven
useful in models of categorization (Gluck & Bower, 1988;
Hayes-Roth & Hayes-Roth, 1977). The second assumption is
plausible given work by Treisman (reviewed by Treisman,
1987) that suggests that simple feature identification is fast and
parallel, whereas identification of conjunctions of features is
slow and serial. For the particular stimuli used in Experiment
2, however, this account makes two wrong predictions. First, it
predicts that scenes that preserve all of the local matches will
always be judged as more similar than scenes that preserve the
global matches. The target scene and Figure 4A have one
complex feature (round head and checkered wings) and four
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Figure 6. Two sample displays from Experiment 3. Each different
pattern represents a different color. A match in place (MIP) was
defined as a matching color between squares that occupied the same
role in their cross. A match out of place (MOP) was defined as a
matching color between squares that occupied different roles.

simple features in common. The target scene and Figure 4B
scene have two complex features (round head with checkered
wings and wavy body with radiating-lines tail) and four simple
features in common. The simple and complex features model
predicts the display with two complex and four simple features
to be the most similar at every deadline. Second, the model
predicts that the greater similarity of the display with locally
preserved matches will be more pronounced later in process-
ing than early in processing. This prediction derives directly
from the assumption that complex features become more
important than simple features with increased processing. This
second prediction is directly opposed to the empirical results.
Instead of increasing its advantage with processing time, the
display with the locally preserved matches lost its similarity
advantage to the display with globally preserved matches as the
deadline increased.

The problem with the simple and conjunctive features
account is that it essentially weights a feature match more if it
belongs to highly similar objects. Adding a simple feature
match between two objects will also add conjunctive feature
matches if the two objects have other matching features.
However, as shown earlier, object alignment in Experiment 2
depended not only on object similarity, but also on the
development of globally consistent object correspondences.
When object similarity is dissociated from object alignment, as
it was in Experiment 2, then feature match salience depends
increasingly on object alignment, and not object similarity,
with time.

Experiment 3

Evidence from the first two experiments indicates that
object correspondences are determined by feature matches
and other object correspondences and that the influence of
object correspondences on similarity (as measured by confu-
sion errors) increases with time. In SLAM, object correspon-
dences depend on an additional third information source:
relations between objects. Objects that play the same role in
two scenes may be placed in correspondence even if the objects
are not featurally similar. The influence of roles on object

correspondences was not considered in Experiments 1 and 2
because the instructions explicitly discounted role information.
Subjects were instructed to respond "same" when the same
butterflies were present in two scenes, even if the relative
positions of the butterflies were not identical. Thus, subjects
were instructed to ignore the spatial relation of one butterfly to
the other and base their decision only on the featural proper-
ties of the butterflies.

The purpose of Experiment 3 was to manipulate instruction-
ally the relevance of spatial relations to the task. One group of
subjects was asked to respond "same" only when the same
objects occupied the same roles in their scenes, with "role"
defined in terms of corresponding spatial position. The second
group responded "same" when the same objects were present
in two scenes, regardless of their spatial relations. The former
group shall be referred to as the role-relevant group and the
latter group as the role-irrelevant group. The design is similar
to that of a study by Proctor and Healy (1985), who referred to
these groups as order-relevant and order-irrelevant, respec-
tively.

In SIAM, the difference between the role-relevant and role-
irrelevant groups can be modeled by varying the influence of
role-to-role nodes on object-to-object nodes. Similarity can
still be measured by feature (mis)matches weighted by their
activation. The instructional manipulation is assumed to affect
only whether object correspondences are influenced by role
correspondences. As role correspondences increasingly influ-
ence object correspondences, objects will be increasingly
aligned on the basis of their role in the scene. In turn, object
correspondences will influence the salience of feature (mis)
matches. In this way, relation information can affect the
similarity of two scenes, even if similarity is only a function of
feature (mis)matches and their activation.

Modeling the difference between the role-relevant and role-
irrelevant groups by varying the influence of role correspon-
dences, SIAM predicts that the different instruction groups
would yield different patterns of scene similarity. In Experi-
ments 1 and 2, whether a feature match was a MIP or a MOP
depended on the featural similarity and consistent correspon-
dences of objects. In Experiment 3, a MIP was defined as a
feature match that occurs between objects that are placed in
correspondence according to their roles. Thus, in Figure 6A,
the two crosses (the center is empty) share 2 MIPs; the shared
striped and checkerboard shadings belong to squares that
occupy the same relative positions. Each square is considered
to be an object. In Figure 6B, the two crosses have 3 MOPs in
common; the three shared shadings belong to squares that
occupy different positions. SIAM predicts that whether a
feature match is a MIP or a MOP should matter more for the
role-relevant than for the role-irrelevant group. If object
correspondences are not determined at all by role correspon-
dences, there would be no difference between the influence of
a MIP and that of a MOP. Conversely, if roles do influence
object correspondences, objects in similar roles will be placed
in relatively strong correspondence, and their feature matches
will be particularly salient.

One possible ramification of SIAM's prediction is that the
similarity of two scenes relative to other scenes may not remain
fixed under the two instruction conditions. If roles have very
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little influence on object correspondences, then the scenes in
Figure 6B may be more similar to each other than the scenes in
Figure 6A are to each other. Such a result would indicate that
2 MOPs increase similarity more than 1 MIP. Conversely, if
roles have a substantial influence, the scenes in Figure 6A may
be more similar than the scenes in Figure 6B. If the relative
similarities of the scenes in Figures 6A and 6B reverse with
task instructions, it would not be possible to claim that the two
tasks tap into the same fundamental construct of similarity.
Such a claim has been made by Proctor and Healy (1985; also
see Ratcliff, 1981). SIAM, in contrast, allows for the basis for
similarity to change with time and, by conjecture, as a function
of instructions. Proctor and Healy argued that their empirical
results are most consistent with a model that bases both
role-relevant and role-irrelevant responses on the same infor-
mation. The implications of the results from Experiment 3 for
this claim are explored in the discussion.

Method

Subjects. Sixty-two undergraduate students from Indiana Univer-
sity served as subjects in order to fulfill a course requirement.

Materials. Displays consisted of two crosslike configurations of
four squares. Unlike the squares shown in Figure 6, the true squares
varied in their colors, not in their shading pattern. The squares were
filled with one of eight highly discriminable colors: blue, red, yellow,
gray, turquoise, brown, green, and orange. Each square had 2-cm
sides. The positions of the two crosses were randomized under the
constraint that the two squares were always more than 6 cm apart.
Viewing distance was not controlled but was approximately 60 cm.

Design. Each subject saw 12 repetitions of a randomized block with
25 trials. On 12 trials within the block, displays consisted of two
identical crosses with the same four colors in the same positions. On
the remaining 13 trials, each of the methods shown in Table 2 was used
once. Each cross can be represented by a four-letter string, with each
letter referring to a particular color and each letter position referring
to a particular square position (i.e., top, bottom, left, and right
positions). One of the crosses (the initial cross) can always be
described by the string ABCD. Each of the 13 methods altered the
initial cross in a particular manner in order to create a changed cross.
The initial and changed crosses shared between 0 and 4 MIPs and
MOPs. A MIP was defined as a color match between squares that were
in identical relative positions in their crosses. A MOP was defined as a
color match between squares that did not have the same relative
position. For example, the crosses ABCD and BCGD shared three
colors in common (B, C, and D), but only one color (D) was in the
same position in the two crosses. Figure 6A is an instantiation of
Method 12, and Figure 6B instantiates Method 2.

Where possible, every combination of MIPs and MOPs that resulted
in four or fewer cumulative color matches was included. Not all
combinations of MIPs and MOPs were possible. For example, no
display with 3 MIPs and 1 MOP could be created unless a two-to-one
mapping was permitted. The particular colors represented by the
letters, the square positions represented by the letter positions, and
the order in which the methods were presented were all randomized.

Procedure. On each trial, the two crosses were simultaneously
presented. Subjects were instructed to press a key with one hand if the
two crosses were the same and to press a second key with the other
hand if the two crosses were different. The 31 role-relevant subjects
were instructed that the two crosses were the same only if they
contained the same colors in the same positions. The 31 role-irrelevant
subjects were instructed that the two crosses were the same as long as
they contained the same colors, regardless of the colors' positions.

Table 2
Design of Experiment 3

Method no.
changed scene

1: BCDA
2: BACH
3: BCAD
4: BAGH
5: BCGD
6: BACD
7: EFDH
8: BFGD
9: ABDH

10: EFGH
11: EFCH
12: EFCD
13: ABCH

No. of
MOPs

4
3
3
2
2
2
1
1
1
0
0
0
0

No. of
MIPs

0
0
1
0
1
2
0
1
2
0
1
2
3

Note. Initial scene was ABCD. MOP = match out of place; MIP =
match in place.

Both groups of subjects were told to respond as quickly as possible
without sacrificing accuracy.

Results

The data of primary interest are shown in Figure 7. The
similarity of the two crosses was measured by the percentage of
trials in which the two crosses received a "same" response and
by the time required to respond correctly that the two crosses
were different.

Error data. For most "different" judgments, the error rate
was substantially lower for the role-relevant than for the
role-irrelevant group. Analyzing only the nine methods of
changing scenes that created a 3 x 3 factorial design, we found
that both MIPs and MOPs influenced the error rate of the
role-relevant group: F(2, 60) = 5.2, MSC = 1.4, p < .05, for
MIPs, and F(2, 60) = 4.3, MSe - 1.7, p < .05, for MOPs. In
addition, there was a MIPs x MOPs interaction, F(4,120) =
3.5, MSe = 2.1, p < .05. The interaction indicates that MOPs
had a greater influence on error rate when there were 2 MIPs,
rather than no MIPs or one MIP. This may have been due to
ceiling effects (low error rates) when crosses had few MIPs.
Considering only methods that yielded no MIPs or one MIP,
we found no evidence for any influence of MOPs on error rate.
For the role-relevant group, MIPs were more influential than
MOPs. We could compare all displays that had the same
number of cumulative matches (MIPs + MOPs). For example,
displays with 3 MIPs/0 MOPs, 2 MIPs/l MOP, 1 MIP/2
MOPs, and 0 MIPs/3 MOPs all had a total of three feature
matches. Comparing such displays, we found a strong influence
of match distribution such that greater confusability occurred
as the number of MIPs increased. There was a significant
linear trend between the number of matches that were MIPs
and confusion errors, F(3,90) = 7.1, MSe = 1.7, p < .05. Very
few errors occurred for 3 MOPs/0 MIPs displays, but many
confusions arose for 0 MOPs/3 MIPs displays. For role-
relevant subjects, a color match's influence on the confusability
of the crosses depended significantly on whether it was a MIP
or a MOP.

This same dependence was not found for the role-irrelevant
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group. Considering only "different" judgments, we found no
significant linear trend between number of matches that were
MIPs at a given number of cumulative matches and error rate,
F(3, 90) = 1.9, MSe = 1.8, p > .10. For example, error rates
were roughly equal for 2 MIPs/0 MOPs, 1 MIP/l MOP, and 0
MIPs/2 MOPs displays. There was, however, an influence of
type of match on "same" judgments, F(3,90) = 3.2, MSe = 2.4,
p < .05. For role-irrelevant "same" judgments, there were
always four matching colors; confusion errors increased as the
number of color matches that were MIPs increased.

For the role-irrelevant group, the same 3 x 3 factorial
design could not be used, because the display with 2 MIPs and
2 MOPs demanded a "same" judgment, whereas the other
displays demanded "different" judgments. Examination of the
2 x 3 (no MIP and one MIP vs. no MOP, one MOP, and two
MOPs) factorial design revealed significant influences due to
both MIPs and MOPs: F(l, 30) = 6.2, MSe = 2.5, p < .05, for
MIPs, and F(2, 60) = 5.9, MSe = 2.0, p < .05, for MOPs.
Compared with the role-relevant group, there was a greater
influence of MOPs, F(2, 60) = 4.9, MSS = 1.8, p < .05.
Whereas MOPs had an influence for the role-relevant group
only when two MIPs were present, they had a strong influence
for the role-irrelevant group at all MIP levels.

Response time data. Data were also obtained on the time
required to respond correctly that the two crosses were the
same or different. With a few exceptions, the response time
data pointed to the same conclusions as the error data. For the
role-relevant group, MIPs and MOPs both influenced re-
sponse time, with the influence of the former much greater
than that of the latter. Concentrating on the 3 x 3 factorial,
response time varied significantly as a function of the number
of MIPs, F(2, 60) = 8.1, MSe = 51, p < .05, and MOPs, F(2,
60) = 4.6, MSe = 60, p < .05. The response time measure was
somewhat more sensitive to MOPs than the error measure.
The differential influence of MIPs could again be determined
by comparing displays with the same number of total color
matches. Once again, there was a significant linear trend that
related the number of MIPs at a particular level of total
matches to response time, F(3,60) = 5.7, MSe = 64,/? < .05.

For the role-irrelevant group, examining the 2 x 3 (Factor 1:
no MIP and one MIP; Factor 2: no MOP, one MOP, and two
MOPs) subdesign revealed significant influences of both MIPs,
F(l, 30) = 4.7, MSe = 48, p < .05, and MOPs, F(2, 30) = 4.3,
MS,. — 52, p < .05, on response time. Compared with the
role-relevant group, there was a greater influence of MOPs,
F(2,60) = 4.3, MSe = 62,p < .05. Considering only "different"
judgments, there was no significant linear trend between the
number of matches that were MIPs for a particular number of
total matches and response time,F(3,90) = 1.4, MSe = 55,p >
.05. The influence of type of match on "same" judgments was
significant, F(3,90) = 4.8, MSe = 51,p < .05.

Relation between error and response time data. With a few
exceptions, the error and response time data mirrored each
other well. As response time for a display increased, error rate
for the display usually increased as well. This pattern counters
a general speed/accuracy tradeoff. However, there was one
noteworthy exception. For both order-relevant and order-
irrelevant groups, "same" judgments were slower but more
accurate than "different" judgments. For the order-irrelevant

group, "same" judgments produced lower error rates
(M = 4.6%) than "different" judgments (16.0%) but produced
response times that were comparable to "different" judgments
(1192 ms for "same" judgments vs. 1226 ms for "different"
judgments). For the order-relevant group, "same" judgments
(1423 ms) required more time than "different" judgments
(1030 ms), but they were also fairly accurate (5.0% and 6.3%
error rates for "same" and "different" judgments, respec-
tively).

Discussion

The most important result from Experiment 3 is that the
role-irrelevant and role-relevant groups produced quite differ-
ent assessments of the relative similarity of different displays.
By both response time and error measures, the role-relevant
group was more influenced by MIPs and less influenced by
MOPs than was the role-irrelevant group. The role-irrelevant
group showed no differential influence due to MIPs versus
MOPs on "different" judgments. Crosses that shared 0 MIPs/3
MOPs were as similar as crosses that shared 3 MIPs/0 MOPs.
In contrast, the role-relevant group showed marked differ-
ences in the influences of MIPs and MOPs for the same
"different" displays.

The instruction manipulation caused shifts in the rank order
of display similarity. There were several cases in which the
crosses of Display A were more similar to each other than were
the crosses in Display B for the role-relevant group but not for
the role-irrelevant group. For example, the crosses of Display 2
(see Table 1) were more similar than the crosses of Display 12
for role-irrelevant, but not role-relevant, subjects. Similar
reversals occurred for Displays 2 and 8 and for Displays 4 and
11. In all cases, the display with more MIPs was more similar
for the role-relevant group, whereas the display with more
MOPs was more similar for the role-irrelevant group.

The influence of task instructions on display similarity
provides difficulties for the claim that a single similarity
estimate underlies response time and error rate performance
in both role-relevant and -irrelevant tasks. Proctor and Healy
(1985) indicated that their empirical data were consistent with
this claim (also see Ratcliff, 1981), although they qualified the
claim on empirical grounds not related to the present results.
Proctor and Healy required subjects to say whether two strings
of three letters were the same or different according to
role-relevant or role-irrelevant rules. Their basic evidence in
favor of a single pool of similarity information was the typical
"mirroring" of the tasks; task variables that made role-
irrelevant subjects slow in responding that two strings were the
same also speeded role-relevant subjects' "different" judg-
ments. In general, Proctor and Healy's data suggest that pairs
of letter strings have a single measure of similarity and that the
different tasks simply have different "cutoff" points as to what
level of similarity is required to respond "same." If a pair of
letter strings is close to the cutoff point, the response is slow
and error prone.

Because the present results clearly oppose the claim that a
single similarity estimate is sufficient to handle both instruc-
tion groups, the question remains, Why do Proctor and Healy's
(1985) study and the present experiments yield discrepant
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outcomes? Essentially, the answer seems to lie in the particu-
lar displays used. Proctor and Healy may have failed to find
evidence that role-relevant subjects were more influenced by
the difference between MIPs and MOPs than were role-
irrelevant subjects because their design did not permit the
comparison of displays that (a) matched MIPs against MOPs
and (b) required the same response for each instruction group.
In our terminology, Proctor and Healy's three-letter displays
fall into four patterns of match distribution: 3 MIPs/0 MOPs, 1
MIP/2 MOPs, 0 MIPs/3 MOPs, and 2 MIPs/0 MOPs. Only the
last pattern is categorized as "different" by role-irrelevant
subjects; only the first pattern is categorized as "same" by
role-relevant subjects. In Experiment 3, there were trade-offs
between MIPs and MOPs that did not change a subject's
correct response. For example, we were able to determine
whether 1 MIP or 2 MOPs increased the similarity of displays
more for both role-relevant and -irrelevant subjects. This is not
possible with the four display types used by Proctor and Healy,
because the two instruction groups gave the same response to
only two of the displays (the display with 3 MIPs/0 MOPs was
called "same" by both groups, and the display with 2 MIPs/0
MOPs was called "different" by both groups), and these
displays varied only on number of MIPs, not number of MOPs.

In short, the present results show that when MIPs and
MOPs are allowed to vary independently in displays that
receive the same response by both groups, they are not equally
important for the two groups. The influence of MIPs and
MOPs varies as a function of the subjects' task. Interestingly, it
also appears that the influence of MIPs and MOPs is not
identical for "same" and "different" judgments. For the
role-irrelevant group, whether a color match was a MIP or a
MOP influenced both the speed and accuracy of "same"
judgments but did not influence either the speed or accuracy of
"different" judgments. A potentially similar finding is that
subjects are more influenced by relational properties for
similarity than for difference judgments (Medin, Goldstone, &
Gentner, 1990). For example, a scene with two squares is
judged to be more similar to and more different from (for
different subjects) two squares than a square and a circle.
Medin et al. proposed that the same-shapes relation influ-
ences similarity judgments more than difference judgments.
Similarly, Experiment 3 suggests that the relational role of a
color matters more for speeded "same" judgments than for
"different" judgments. This result, together with the tendency
for slow but accurate "same" judgments, suggests that "same"
and "different" judgments may be based on different processes
(for a review of dual-process models, see Farell, 1985). In
summary, MIPs and MOPs appear not to be equally weighted
for role-relevant and role-irrelevant tasks and also appear not
to be equally weighted for "same" and "different" judgments.

Theoretical Analysis

All three experiments provide general support for the role of
alignment and evolving global constraint satisfaction associ-
ated with SIAM. Before considering the implications of these
results for theories of similarity, we wish to present a more
detailed analysis of SIAM. We begin with quantitative model-
ing, contrasting SIAM's predictions with those of a number of

alternative models that attempt to address similarity in a less
dynamic manner.

Experiment 1

Experiment 1 allows for a quantitative analysis of SIAM
because of the fairly large number of displays. Thirteen
displays were presented at each of three deadlines, yielding 39
data points to model. Because the full version of SIAM has too
many parameters relative to the number of data points, default
values were assigned to all parameters internal to SIAM (as
described by Goldstone, 1994).2 However, free parameters are
still required to apply SIAM to the paradigm of speeded
responses under deadline. SIAM's estimates are incorporated
in a boundary-crossing model of same, different, and overtime
responses (for another example of a boundary-crossing model,
see Busemeyer & Rapoport, 1988). Figure 8 is a graphic
depiction of the boundary-crossing model. Initial upper and
lower boundaries are chosen. If SIAM's estimated similarity
for a display, combined with Gaussian random noise (with a
mean of 0 and a variance of N),3 falls above the upper
boundary, a "same" response is given. If SIAM's estimate falls
below the lower boundary, a "different" response is given. If
neither of these events occurs, SIAM enters another cycle of
activation adjustment, and the boundaries are adjusted.

Boundaries need to be adjusted because similarity generally
increases with cycles in SIAM, and a more stringent criterion
for responding "same" is required as the amount of processing
increases. A subject may quickly respond "same" if two scenes
appear moderately similar. However, if the subject examines
the scenes for a long time, virtual identity should be required
before the subject responds "same." Similarly, a "different"
response may be made after a long period of processing even
though the scenes are highly similar—a single difference
suffices for a "different" response.

To model the effect of processing time on the decision
criteria, we assume the bounds to vary according to

boundary^ =
(L-QI+C

where boundaryc is the upper or lower boundary used to
obtain SIAM's estimate at Cycle C, I is the initial value of the
boundary, and L is the cycle when the upper and lower
boundaries converge to 1.0. This equation dictates that both
the upper and lower boundaries will increase linearly, with the
lower boundary increasing with a greater slope. Ideally, the
subjects' deadline would be at L. However, subjects frequently

2 A nondefault value of 2.0 was assigned to the parameter object to
feature weight. This particular value is not important, as long as it is
greater than 1.0. If the parameter is given a value of 1.0, no amount of
activation cycling will allow nonmatching features to be placed in
strong correspondence because of their objects' alignment.

3 The noise parameter is necessary to make SIAM stochastic. When
shown the same display, a subject will sometimes say "same" and
sometimes say "different." Without N, SIAM would always give the
same response to a particular display at a particular deadline. As N
increases, SIAM's determinism decreases.
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Figure 8. The boundary-crossing model used to supplement the similarity estimate of the similarity as
interactive activation and mapping (SIAM) model. If SIAM's estimate crosses a lower boundary, a
"different" response is given; if it crosses an upper boundary, a "same" response is given. Parameters are
as follows: M - 0.4, short-distance = 0.1, long-distance = 0.3, cycles per second = 10, and^T = 1.12.

give overtime responses. These are accommodated by includ-
ing another parameter, cycles per second. The cycles-per-
second parameter converts the number of seconds that sub-
jects are given for their decision to the number of cycles of
activation adjustment that SIAM is allowed. For example, if
the number of cycles per second is set at 20, SIAM will model
the data from the three experimental deadlines (1 s, 1.84 s, and
2.68 s) by setting a deadline D at 20, 37, and 54 cycles,
respectively.4 If SIAM's estimate has not exceeded the upper
or lower boundary by D, the response is considered to be
overtime. If D were equal to L, no overtime response would be
possible. If L is set equal to D multiplied by the constant K, L
can be greater than £>, allowing for trials on which similarity
has not exceeded either boundary by D.

The instructional manipulation of deadline is directly mod-
eled by D, but deadline also must influence the speed of an
average response. To this end, the initial upper and lower
boundaries also depend on deadline. A mean value between
the upper and lower boundaries, M, is parametrically set. (If M
is relatively high, there will be a bias to respond "different." If
M is low, there will be a bias to respond "same".) Three
parameters—short distance, medium distance, and long dis-
tance—refer to the distances of the initial upper and lower
deadlines to M for the short, medium, and long deadlines,
respectively. In general, we anticipate that the upper and lower
boundaries will be closer to M for the short than for the long
deadline. The closer the boundaries are to M, the sooner they
will be crossed by SIAM's estimate.

In summary, the data from Experiment 1 are modeled by
running a default version of SIAM, supplemented by a
seven-parameter process model of "same"-"different" deci-
sions. SIAM was run 100 times for each of the 39 display-
deadline combinations. From these 100 runs, percentages of
correct "different" responses, incorrect "same" responses, and
overtime responses were determined. The parameters N, M,
short distance, medium distance, long distance, cycles per
second, and /Cwere fit so as to minimize the root mean square
error of SIAM's predictions of the empirically observed
percentages.5 The other parameters (£> and L) can be derived
from the number of cycles per second and K.

The best fitting SIAM estimate has a correlation of (r) .973,
with N = 0.34, M = 0.63, short distance = 0.12, medium
distance = 0.20, long distance = 0.23, cycles per second = 12,
and K = 1.72. The overall fit is extremely good but perhaps is
best gauged when compared with competing models. Other
theoretically motivated but simple methods for computing
scene similarity/confusability were developed. These models

4 By using a single parameter to convert from subjects' deadlines to
cycles, we are making the strong assumption of a ratio scale for number
of cycles. Although this is probably too strong an assumption, model
fits were not significantly better when two parameters, corresponding
to an interval scale, were used to model deadlines: number of cycles for
medium deadline and number of cycles added/subtracted to derive
short/long deadlines.
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all involve a linear regression with confusability/similarity as
the predicted variable.

First, we can assign separate parameters for the influence of
total number of matching features at each of the three dead-
lines. This four-parameter model obtains a correlation of .87.

Second, we can consider a model that explicitly distinguishes
between features matches that are in and out of place. Such a
model agrees with our main thesis that object alignment is an
important determinant of the influence of matching features
between the scenes on similarity. This model is instantiated by
a linear regression with number of MIPs, number of MOPs,
deadline, and intercept as predictors of confusions. This model
obtains a correlation of .92. The regression weights for number
of MIPs and number of MOPs were 11.1 and 2.9, respectively.
Both of these values were significantly different from 0,
r(37) > 2.6, p < .05, corroborating that both MIPs and MOPs
have a significant influence on confusions. In addition, the
regression weights for MIPs and MOPs were significantly
different, f(37) = 4.3, p < .05, indicating that MIPs have
significantly greater influence on confusions within this model
than do MOPs. This differential weighting of MIPs and MOPs
reveals that a large part of the superior fit of this second model
is due to its distinction between MIPs and MOPs.

The third and last model that was tested also makes a
distinction between MIPs and MOPs. In addition, it allows for
the possibility that the influences of MIPs and MOPs vary
independently with deadline. This model is able to instantiate
SIAM's prediction that MOPs are relatively influential for
similarity early in processing and MIPs are relatively influen-
tial later in processing. A linear regression was applied with
separate predictors for number of MIPs and number of MOPs
at each of the three deadlines. The resulting best fitting
equation was as follows: Percent errors on "different" trials =
7.4 (fast-deadline MOPs) + 14.1 (fast-deadline MIPs) + 0.9
(medium-deadline MOPs) + 10.2 (medium-deadline MIPs) +
0.5 (slow-deadline MOPs) + 9.2 (slow-deadline MIPs).

The preceding linear regression achieved a correlation of
.956, and the set of six predictors, when added to any of the
previous models, significantly increased the quality of the
models' fits. This third model contains several points of
interest. First, the weights of the MIPs terms are uniformly
larger than weights of the MOPs terms. This reconfirms the
benefit of an analysis that distinguishes between feature
matches that do and do not belong to aligned objects. Second,
the weights of both MIP and MOP terms decrease with
increasing deadline. This is due to the low error rates that are
observed for trials with slow deadlines. Third, and most
important, the weights of MOP terms decrease more rapidly
with longer deadlines than do the weights of MIP terms.
Whereas deadline has a significant influence on linear regres-
sion weights when only the MOP terms are considered, F(2,
37) = 3.7, MSe = 0.02, p < .05, there is no corresponding
influence of deadline when only the MIP terms are considered,
F(2, 37) = 1.4, MSe = 0.03, p > .10. Thus, it appears that the
quality of this model's fit is attributable to its flexibility in
allowing MIPs and MOPs to vary in their relative influence
with processing time. The four error overestimates that exceed
2 standard deviations occur for Display 13 at a slow deadline,
Display 13 at a medium deadline, Display 4 at a fast deadline,

and Display 5 at a fast deadline. The two error underestimates
that exceed 2 standard deviations occur for Display 10 at a fast
deadline and Display 9 at a slow deadline. A general character-
ization of the pattern of residuals seems to be that the model
underestimates the influence of large number of MIPs at slow
deadlines and overestimates the influence of MIPs at fast
deadlines.

SIAM's fit is superior to this third model. The predicted and
observed values for the third model and SIAM are shown in
Table 1. Adding a term for SIAM's estimate significantly
increases the third model's fit,F(2,37) = 4.1, MSe = 0.02, p <
.05, and adding any combination of the terms from the model
to SIAM's estimate does not increase SIAM's fit. Although the
difference in correlations is not large (.973 for SIAM vs. .956
for the third model), when correlations are close to 1.0 small
differences signify large differences in the quality of model fits.
Both the third model and SIAM have seven degrees of
freedom.

SIAM does not overestimate the same patterns that the
third model does. SIAM is able to accommodate the high error
rates for Display 13 at slow and medium deadlines. Display 13
contains seven MIPs; it is important to note that two of the
scenes' objects are identical. Because two objects have identi-
cal features and no mismatching features, SIAM's object-to-
object node that represents the alignment of these two objects
will be strongly activated. As a consequence, the individual
feature matches shared by the two objects will receive a large
amount of excitatory support from the object correspondences.
This, in turn, results in a high similarity estimate, even after
many cycles of activation adjustment.

SIAM also provides an account of the high error rates given
to displays with few MIPs (Displays 4 and 5) at fast deadlines.
The third model is forced to predict fairly low error rates for
these displays because the parameter for MIPs at fast deadline
must receive a much higher value than MIPs at slow deadline
in order to explain the very different confusabilities of Displays
11 and 13 or Displays 8 and 12 (for example). But, given that
the MlPs-at-fast-deadline parameter is weighted heavily, dis-
plays with very few MIPs must be given low similarity/

^confusability assessments. SIAM is not forced into this dil-
emma because it does not assume that all MIPs are equally
quickly placed in alignment. When scenes share many MIPs
(e.g., Display 13), the proper object alignments are determined
very quickly. Objects that share many MIPs will soon be placed
in alignment and will feed activation back to nodes that
represent the feature matches. However, if scenes share
relatively few MIPs (e.g., Displays 4 and 5), no objects will be
placed in strong alignment immediately. Therefore, the MIPs
will not receive significant fed-back activation from object
correspondences. In short, SIAM is not committed to the
assumption that all MIPs at a given deadline receive the same

5 Model parameters that maximize the likelihood of obtaining the
observed data under the model are also obtained, and are arguably (K.
Smith, personal communication; May 11,1991) more appropriate for
data with category-dependent and -independent variables. The best
fitting maximum likelihood parameters closely approximate the least
mean square estimates. We use the latter for the present modeling in
order to have greater comparability with the other models developed.
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weight. The large influence of MIPs relative to MOPs can take
a long time to develop if the objects are not placed in strong
alignment, but it can develop rapidly if the objects are placed
in strong alignment.

Experiment 2

The results from Experiment 2 are not amenable to detailed
quantitative fits by SIAM because there are too few data
points. There were only three different display types, each
shown at three deadlines. SIAM qualitatively models the
results well. Under virtually all parameter settings, SIAM
predicts that with time (number of cycles of activation adjust-
ment in SIAM), scenes with more globally consistent feature
matches become increasingly similar compared with scenes
with more locally determined feature matches. As discussed
earlier, the results are problematic for models that claim that
simple features and conjunctive features are both encoded and
that simple features are registered more quickly than conjunc-
tive features, as well as models that assert that features align
simply on the basis of their objects' similarity without regard
for other objects' similarities.

Experiment 3

To model the results from Experiment 3, we must incorpo-
rate role-to-role correspondences into SIAM. Scenes are
described by four objects that contain one color feature each.
The four objects serve as arguments to the following schema:
cross (upper-arm role, lower-arm role, left-arm role, and
right-arm role). Thus, one scene might be represented as
follows: cross (Object 1 [color = blue], Object 2 [color = red],
Object 3 [color = yellow], Object 4 [color = gray]). As de-
scribed earlier, SIAM tends to place objects in correspondence
that occupy identical roles in their crosses and that have
identical colors. The first tendency is controlled by the param-
eter role to object weight, and the second is controlled by the
parameter feature to object weight. In the current modeling,
feature to object weight is assigned a default value of 1.00, and
role to object weight is fit as a free parameter.

The parameter role to object weight is the critical parameter
used for modeling the difference between Experiment 3's
role-irrelevant and role-relevant groups. The assumption made
in the modeling is that the difference between these groups can
be characterized in terms of the weight given to roles in
determining feature matches. Hypothetically, the role-relevant
group's behavior should be better modeled by a higher value
for role to object weight than is given for the role-irrelevant
group. Thus, two parameters, role to object weight when roles
are relevant and role to object weight when roles are irrel-
evant, are used to model the results from the two groups.

To accommodate the same-different error and response
time data, we augmented SIAM with a simplified version of the
processing model used to model the results from Experiment
1. Once again, upper and lower boundaries are initially set
equal to M + distance and M — distance, where both M and
distance are free parameters. Experimentation also showed
that a single M value for both role-irrelevant and role-relevant
groups was insufficient. Consequently, a separate value of M

was found for each group. Having separate Ms allows SIAM to
model different "same" and "different" criteria for the groups.
When SIAM's estimate, combined with Gaussian random
noise (with a mean of 0 and a variance of JV), exceeds the upper
boundary, a "same" response is emitted. When the estimate
and noise fall below the lower boundary, a "different" re-
sponse is emitted. As before, unsatisfactory fits were obtained
when the boundaries were assumed to remain constant with
processing. Instead, it is assumed that both boundaries rise
linearly, simulating the intuition that more demanding evi-
dence is required for a "same" judgment as processing
continues. The parameter L stands for the cycle number at
which the upper and lower boundaries meet at l.O.6 On each
cycle of activation adjustment, the upper and lower boundaries
are incremented. In addition to recording SIAM's response
("same"-"different"), we also record the number of cycles
required to cross a boundary.

All in all, seven parameters (JV, L, M irrelevant, M relevant,
distance, and role to object weight for role-irrelevant and
role-relevant groups) were freely fit so as to minimize root
mean square error. SIAM was run 100 times on 20 displays
presented in Experiment 3. Only displays that were assigned a
correct response of "different" for both groups were modeled.
Averaging across the 100 separate runs, the percentage of
correct "different" responses, the percentage of incorrect
"same" responses, and the average number of trials required
for each type of response were recorded. When applied to the
error data (the percentage of incorrect "same" judgments on
"different" displays), the best fitting SIAM estimate had a
correlation of .944, with N = 0.29, M roles relevant = 0.70, M
roles irrelevant = 0.64, L = 38, distance = 0.17, role to object
weight when roles are irrelevant = 1.5, and role to object
weight when roles are relevant = 2.4. For purposes of
comparing this fit with that of other models to be developed, it
is also informative to fit a five-parameter version of SIAM that
sets the parameter role to object weight when roles are
irrelevant to its default value of 1.0 and sets N to the previously
found value of 0.34. When this is done, the correlation only
drops to .942. The additional two parameters do not signifi-
cantly add to the fit of the five-parameter version.

When applied to the response time data (only "correct"
trials), the best fitting SIAM estimate had a correlation of .980,
with N = 0.26, M roles relevant = 0.74, M roles irrelevant =
0.67, L = 33, distance = 0.13, role to object weight when roles
are irrelevant = 1.2, and role to object weight when roles are
relevant = 2.7. Again, the five-parameter version of SIAM did
not fit the data significantly worse than this model.

We developed two alternative linear regression models to

6 It might appear to be more natural to dedicate parameters for
initial-upper, initial-lower, slope-upper (the rate at which the upper
bound increases), and slope-lower. However, the effect of any combi-
nation of values for these four parameters can be exactly duplicated by
the three parameters L, M, and D, as long as slope-lower is greater
than slope-upper. This is accomplished by setting M = (initial-
upper + initial-lower)/2, D = (M — initial-lower), and L = (initial-
upper - initial-lower)/(slope-lower - slope-upper). Thus, the param-
eters L, M, and D were chosen so as to be compatible with Experiment
1 and to minimize the number of free parameters.
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appraise SIAM's fit. The first model predicts the percentage of
incorrect "same" judgments on "different" displays as a
weighted function of number of MIPs, number of MOPs,
group (a variable that codes whether role-relevant or role-
irrelevant instructions were given), and an intercept term. The
model achieved a correlation of .856 for the error data and .912
for the response time data (with different parameter values for
the two fits).

The second model makes a distinction between MIPs and
MOPs and further distinguishes between the relative influence
of MIPs and MOPs for the two groups. This model can capture
SIAM's basic prediction that the influence of MIPs relative to
MOPs is greater when roles are relevant than when roles are
not relevant. Thus, this five-parameter model assigns separate
values for intercept, role-relevant number of MIPs, role-
relevant number of MOPs, role-irrelevant number of MIPs,
and role-irrelevant number of MOPs.

The best fitting equation for predicting error rate—percent
"same" responses = 0.24 + 4.39 (role-relevant MIPs) + 0.477
(role-relevant MOPs) + 8.04 (role-irrelevant MIPs) + 7.69
(role-irrelevant MOPs)-—obtained a correlation of .921. The
difference between the weights of MIP and MOP terms is
much greater for the role-relevant than for the role-irrelevant
displays. This corroborates the empirical result that the differ-
ence between MIPs and MOPs is much more important when
roles are relevant.

The best fitting equation for predicting response time—
"different" response time (milliseconds) = 821 + 163 (role-
relevant MIPs) + 27 (role-relevant MOPs) + 195 (role-
irrelevant MIPs) + 219 (role-irrelevant MOPs)—obtained a
correlation of .972 and even more dramatically depicts an
interaction between the relative weights of MIPs and MOPs
and the group instructions.

SIAM's estimate, when added to this second model, signifi-
cantly increases the fit of this model, considering either error
or response time data results. Conversely, this second model
only increases the fit of SIAM's prediction of error rate. The
pattern of residuals from the second model is diagnostic. The
three largest overestimates of the model on the error data
occur on displays with two MIPs and 0 MOPs (Display 12 in
Table 2) role irrelevant, 2 MIPs and 0 MOPs role relevant, and
1 MIP and 1 MOP role irrelevant. Similarly, the three largest
overestimates of the model on the response time data occur on
displays with 2 MIPs and 0 MOPs role irrelevant, 2 MIPs and 0
MOPs role relevant, and 1 MIPs and 0 MOPs role relevant.
The three largest underestimates of the model for both the
error and response time data occur on displays with 0 MIPs
and 0 MOPs role irrelevant, 3 MIPs and 0 MOPs role relevant,
and 1 MIP and 2 MOPs role irrelevant. Thus, the second
model mispredicts both the error and response time data in
almost identical patterns. An interpretation of the pattern of
residuals, obtained by consulting Figure 5, would be that the
model has difficulty simultaneously explaining the large differ-
ence between 3 MIPs and 2 MIPs and the much smaller
difference among 0, 1, and 2 MIPs. The compromise param-
eter values that best fit the data underestimate the difference
between 3 MIPs and 2 MIPs by overestimating the similarity of
2-MIPs displays and underestimating the similarity of 3 MIPs
displays. Likewise, the model overestimates the difference

between smaller number of MIPs by underestimating the
similarity of 0-MIPs displays and overestimating the similarity
of 2-MIPs displays.

SIAM has a positive-feedback process that naturally accom-
modates the nonlinear influence of MIPs on similarity. When
scenes share 3 MIPs, the MIPs serve to support and excite each
other. This is due to within-layer excitatory connections
between nodes. Object-to-object, and role-to-role, correspon-
dences that are consistent will be mutually excitatory. A MIP
that comes from a display with 2 other MIPs will receive
excitation from two within-layer sources, whereas a single MIP
will not receive any strong within-layer excitation.

Summary of Fits

In this theoretical analysis, we have made several important
points. First, models for this task need to distinguish between
MIPs and MOPs and to take into account both locally and
globally determined matches. Second, the contributions of
these factors is dynamic and changes with processing time.
Beyond that, the greater success of SIAM than the alternative
models shows that a detailed process model is needed to
capture the full influence of MIPs, MOPs, and time on
performance.

General Discussion

General Advantages of SIAM

SIAM's estimates significantly increase the fit of the other
models, but, with one exception (the error data from Experi-
ment 3, when compared with the five-parameter model) the
other models do not significantly increase SIAM's fit if they are
included in SIAM. Furthermore, SIAM is able to avoid some
of the systematic errors of even the most successful alternative
models. SIAM naturally accommodates the nonlinear influ-
ence of MIPs on similarity (from Experiment 3) and the fact
that the importance of a MIP depends on the strength of object
alignments (from Experiment 1). There are, however, a num-
ber of advantages to SIAM, apart from its superior quantita-
tive fits.

The most important advantage of SIAM is that it provides
an account of alignment. The other models either do not make
a distinction between aligned and unaligned features or use
hand-coded representations of MIPs and MOPs. SIAM's input
is simply the description of the two scenes. SIAM, in the course
of its processing, determines whether a feature match is a MIP
or a MOP. By contrast, feature matches are labeled "in place"
or "out of place" for the other models that make a distinction
between MIPs and MOPs. SIAM's input, therefore, is in a less
preprocessed form. SIAM organizes a display into element-to-
element correspondences instead of relying on a preprocessor
to identify MIPs and MOPs.

In addition, SIAM is able to predict both response time and
error data by a single process model. The other models could
fit both types of data, but only by reestimating their param-
eters. SIAM's fit decreases modestly when it is forced to
predict response time and error data simultaneously, but the
fits are still comparable to those obtained from the best fitting
model that maximizes only a single set of data.
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Third, SIAM provides an explanation of why processing
time has the effect it does. The best fitting models for
Experiment l's results all allow differential weighting of MIPs
and MOPs, depending on the deadline. However, only SIAM
provides a mechanism for this interaction. According to SIAM,
MIPs become more influential with time relative to MOPs
because the proper (globally consistent) object alignments
take time to develop.

Fourth, SIAM is more constrained than the other models.
Measuring the flexibility of a model simply by counting the
number of free parameters is crude at best. Although SIAM
has as many free parameters as the most complex alternative
models, it is also considerably more constrained in its predic-
tions. Whereas the other models could have modeled the
result that MIPs become relatively less influential with time,
SIAM could only have modeled the interaction that was
empirically obtained. Similarly, SIAM predicts that the differ-
ence between deadlines of 1 and 1.84 s must be greater than
the difference between 1.84 and 2.68 s despite their constant
interval. The asymptotic boundaries on node activations causes
activations to change most quickly early in processing. On the
other hand, the other models considered could have assigned
any regression weights to the different deadlines. SIAM makes
correct predictions with respect to nonlinear influences of
MIPs, the time course of locally and globally consistent
matches, and the influence of task instructions on MIPs and
MOPs. Although some of these results are compatible with the
other models considered, they are not genuine predictions of
the alternative models.

Applications of SIAM

Task manipulations in SIAM have been modeled by making
specific changes to a limited number of parameters. Experi-
ment l's deadline conditions were modeled by manipulating
the slopes of the lower and upper boundaries, making them
converge after many or few cycles. Experiment 3's task
manipulation was modeled by allowing the influence of roles
on objects to vary (and by altering the initial lower and upper
boundaries). The research strategy has been to use the same
basic processing model with slight variations in order to
account for different tasks. Consequently, one powerful aspect
of SIAM is that it potentially provides a unified account of
different techniques of assessing similarity. Different measures
of similarity (e.g., similarity ratings and speeded "same"-
"different" judgments) are strongly correlated, but they also
seem to be different measures. For the most part, researchers
have not attempted to provide formal accounts of the differ-
ences between tasks. Usually, they have ignored or discounted
the differences between their similarity measures.

SIAM provides an alternative to (a) treating different
measures of similarity as measuring the same construct and (b)
treating different measures as completely independent. SIAM
predicts strong correlations between measures insofar as they
all involve a common process of alignment. SIAM predicts
dissociations to the extent that measures use different param-
eter values or secondary processes. This modeling approach is
not able to accommodate all of the task differences between
different comparison tasks. However, the approach is useful

N
T

A

B

C

D

n
Zl

Similarity
Rating

4.64

4.60

5.48

4.32

Confusion %

0.119

0.524
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0.286

Figure 9. Sample stimuli from Corter (1987). The similarity ratings
and confusabilities of Stimuli A-D with respect to T are shown.

because it permits analysis of tasks along particular dimen-
sions. The dimensions that were parametrically varied in the
simulations were the amount of processing time permitted and
the importance of roles. In addition, both same-different
response times and error rates can be modeled if SIAM is
augmented with a boundary-crossing process. Other similarity
tasks may be best modeled by variations of other SIAM
parameters. Thus, SIAM provides a framework for comparing
and contrasting tasks. Although we wish to avoid the strong
claim that the requirements of all comparison tasks can be
instantiated in SIAM, SIAM does provide a method for
organizing the systematic relations between some tasks. The
following four applications illustrate the use of SIAM in
accounting for regularities between tasks.

Corter (1987). Corter presented the same materials in both
similarity rating and same-different tasks. Although most of
the materials from his Experiments 3 and 4 were arbitrarily
created, a subset of the materials was designed to be similar to
a particular stimulus. The four stimuli—A, B, C, and D in
Figure 9—were designed to be similar to T. Interestingly, T
was rated as most similar to C but was most often confused
with B.

SIAM has a plausible, although post hoc, account for this
difference in similarity measures. SIAM would be expected to
execute fewer cycles of activation adjustment in the same-
different task than in the similarity rating task because of the
different time pressures. If similarity is estimated after few
cycles have been executed, there will be little chance for
relations to influence similarity. In this situation, T might be
expected to be more similar to B than C. Treisman and
Paterson (1984) have argued that line segments with specific
orientations are psychological primitives, and Pomerantz (1986)
has argued that oriented angles are primitives. Thus, the
diagonal line and 45° angle shared by T and B would be
encoded in SIAM as simple features. The more complex,
vertically oriented horseshoe shape shared by T and C, on the
other hand, is too perceptually complex to be a single feature
and would consequently be represented as a relation or
schema. Although the top bar of C and the bottom bar of T are
not aligned strongly by their location similarity, they would be
aligned by a shared role. Both bars are the middle argument of
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the schema horseshoe shape (left leg, horizontal connecting
bar, right leg). The relational similarity of T and C would
influence similarity more with time. As a result, T and C would
seem more similar with similarity judgments than with speeded
judgments. It is interesting to note that D may not receive as
high a similarity rating as does C when compared with T
because of a two-to-one mapping. The connecting bar of D
aligns with either T's bottom bar or its right bar, depending on
whether the alignment is feature or role driven. To the extent
that these correspondences compete, similarity ratings are
expected to suffer. SIAM cannot explain all of the results in
Figure 9, but it does provide an account of the largest
discrepancies between the similarity measures.

Beck (1966). Beck found a strong dissociation between
similarity and perceptual grouping. A tilted T was judged to be
more similar to an upright T than an X, but the tilted T was
also more likely to be perceptually grouped with the X than the
upright T. Again, similarity judgments are assumed to involve
more cycles of activation adjustment than grouping decisions;
subjects make the former judgment much more slowly. The T
shapes can be represented as follows: T shape (bar subtended
in middle, subtending bar). Specifically, the representations of
the tilted T, T, and X may be as follows: T shape (135° bar, 45°
bar), T shape (0° bar, 90° bar), and X shape (135° bar, 45° bar).
By these representations, the tilted T and X would be similar
because of their matching diagonal bars, but the tilted T and T
would be similar because of their corresponding roles. A
similar treatment can be given to Gati and Tversky's (1984)
observation that 6 and 9 (in calculator-like fonts) were judged
more similar than 6 and 8 although the latter pair was more
frequently confused in a faster recognition task.

Palmer (1978). Palmer argued that multisegment figures
are not represented in terms of independent line segments.
Instead, figures are represented in terms of structural relations
between line segments such as "closure" and "good continua-
tion." Palmer used sets of stick figures (similar to those used by
Corter, 1987) that had the same number of shared line
segments but different amounts of relational similarity.

Palmer (1978) found that common structural relations
influenced similarity, as measured by a same-different task. In
addition, the influence of structural commonalities was greater
when figures were presented simultaneously than when they
were presented sequentially. In simultaneous presentation,
both the standard figure and the comparison figure were
flashed on the screen at the same time. In sequential presenta-
tion, one figure appeared for 1 s, followed by a blank screen for
500 ms, followed by the second figure.

As in previous modeling, we assume that fast "different"
judgments are made when SIAM's similarity estimate on
"different" trials becomes low quickly. Roughly, structural
relations can be represented in terms of role nodes, and object
nodes can represent groupings of one or more line segments.
In Palmer's (1978) study, sequential decisions were made
much more quickly than simultaneous decisions, presumably
because of the longer exposure of one the figures. Because of
this general response time difference, SIAM would model the
sequential task with fewer cycles of activation adjustment than
the simultaneous task. Palmer's results can be taken as a
special case of SIAM's general enhancement of relational
properties with more processing time. Early in processing,

SIAM is strongly influenced by featural similarity. On the first
cycle, SIAM is influenced only by matching line segments;
similarity would simply be a function of the number of
overlapping line segments. Later, SIAM is influenced more by
role correspondences. Again, this account is speculative, but at
least it is testable.

Proctor and Heafy (1985). Recall that Proctor and Healy
argued that their results were consistent with a model that role
information counts in the comparison of letter strings, but that
it counts equally for role-relevant (called "order-relevant" by
Proctor and Healy) and role-irrelevant comparisons. That is,
the same similarity estimate can serve both comparison tasks
(with a few caveats that are not relevant to the present
discussion). Contrary to this conclusion, Experiment 3 showed
that the MIPs were much more heavily weighted (relative to
MOPs) for role-relevant displays than for role-irrelevant
displays, indicating that the two tasks compute similarity
differently. We can ask whether differential weighting of MIPs
and MOPs can explain any results from Proctor and Healy's
experiment that are difficult to handle by a single-similarity-
estimate model. In fact, Proctor and Healy pointed out exactly
such a result. In the role-relevant task, subjects responded that
ABC and BCA were different more quickly and accurately
than they responded that ABC and AXC were different. In the
role-irrelevant task, subjects are much more likely to call ABC
and BCA correctly the same than they are to call ABC and
AXC incorrectly the same. In other words, if an error measure
of similarity is used, ABC is more similar to BCA than AXC
for role-irrelevant, but not role-relevant, subjects. As Proctor
and Healy acknowledged this evidence indicates that the two
tasks are not based on exactly the same similarity estimate.

SIAM predicts this task difference, assuming that roles
correspond to relative positions within a letter string and that
the role-relevant task is modeled by a relatively high role-to-
object weight. ABC has 3 MOPs in common with BCA and 2
MIPs in common with AXC. For the role-irrelevant task,
scenes with 3 MOPs may be more similar than scenes with 2
MIPs because of the fairly large influence of features on object
correspondences. For the role-relevant task, scenes with 2
MIPs may be more similar than scenes with 3 MOPs because of
the strong influence of role alignments on object correspon-
dences. Not all of the data reported by Proctor and Healy
(1985) can be accounted for by SIAM supplemented with the
assumption concerning role-to-object weight. Still, an analysis
of their data suggests that the order-irrelevant and order-
relevant tasks do not always use the same similarity informa-
tion. Despite this difference, the pattern of results from both
tasks can be modeled by SIAM if a reasonable assumption
concerning parameter values is made.

Summary. We do not wish to claim that similarity ratings,
assorted same-different judgment tasks, and other measures
of similarity all use exactly the same process. There are
nontrivial processing differences between the tasks that cannot
be modeled simply by changing parameter values of SIAM.
Nonetheless, SIAM can be used as a tool for comparing and
contrasting different tasks along particular dimensions (i.e.,
how long processing takes, how important roles and simple
features are, and whether there are biases to respond in
particular ways). To the extent that SIAM can model different
conditions of a single task or different tasks, we have a simple
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and elegant method of analyzing common and distinctive
characteristics of similarity measures.

Related Work

The present data and theoretical analyses argue for a
prominent role of alignment in the comparison of scenes with
multiple parts. In addition, Experiments 1 and 2 provide
insight into the time course of the alignment process. Early in
processing, the weights of feature matches seem to be based on
the locally determined featural similarity of the matches'
objects. Later in processing, the weights of feature matches
become more sensitive to the global consistency of object
correspondences. With globally consistent object correspon-
dences, each object in one scene corresponds to a single object
in the other scene. SIAM incorporates this global consistency
constraint by a mechanism similar to one used by Holyoak and
Thagard (1989). Nodes representing inconsistent correspon-
dences inhibit each other. Object correspondences are first
determined by the only information available—feature matches.
Once object correspondences are developed, they begin to
influence each other, yielding correspondences (depending on
parameter values) that are optimally consistent. As object
correspondences begin to redirect each other's activation,
matches between aligned objects (MIPS) become particularly
important for determining similarity (Experiment 2).

SIAM's basic local-to-global processing principle is pos-
sessed by the SME (Falkenhainer et al., 1990) and ACME
(Holyoak & Thagard, 1989) models of analogical reasoning. In
ACME and SME, there are pressures against developing
many-to-one mappings, and pressures in favor of developing
mutually consistent mappings. In many respects, the present
work is a quantitative model that extends this work in analogy
to more quantitatively literal/perceptual forms of similarity
(see also Gentner, 1989; Gentner & Ratterman, 1991; for
other evidence that perceptual similarity is more sophisticated
than might be thought, see Smith & Heise, 1992). In addition,
the notion of determining globally consistent correspondences
operates in what Marr (1982) called "cooperative algorithms."
For example, in Marr and Poggio's (1979) model of depth
perception or Ullman's (1979; also Dawson, 1991) model of
apparent motion, correspondences between visual elements
are computed in a manner that yields correspondences that are
maximally consistent with each other.

Several researchers have argued that different sources of
similarity information are available at different points in
processing. Gillund and Shiffrin (1984) proposed a fast process
that determines a probe's overall similarity to all items in
memory and then gives way to a slower item-by-item similarity
computation. Dosher (1984) provided evidence that, when
subjects judge whether two words are paired in a list, semantic
similarity gives way to retrieval of specific associations. Sekular
and Palmer (1992) found that before 200 ms, a visual object
tended to prime isolated "mosaic" elements; after 200 ms, the
object primed its complete, globally consistent, interpretation.
Evidence from Gronlund and Ratcliff (1989) suggests that
single-item information can be retrieved more quickly than can
information about associations between items. Ratcliff and
McKoon (1989) found that discriminating sentences on the
basis of their words occurred early in processing, but discrimi-

nating sentences on the basis of relations between words
occurred only after 600-700 ms. They argued that their results
are problematic for models that assume only a single similarity
value that underlies judgments at all points in processing.

Consistent with Ratcliff and McKoon's (1989) conclusions,
the present results emphasize the explanatory inadequacy of
similarity assessments that do not change with processing. In
Experiment 2, whether the lower left scene or the lower right
scene of Figure 4 was more confusable with the target scene
depended on how long subjects were given to make their
decisions. Any model that assigns a fixed similarity value to
each of the comparisons will fail to capture the ordinal
cross-over of confusabilities that is observed as function of
deadline. Similarly, in Experiment 1, scenes that shared six
MlPs/zero MOPs were more confusable/similar than scenes
that shared 5 MIPs/3 MOPs if subjects were given 2.68 s to
respond, but exactly the opposite pattern was found if subjects
were given only 1 s to respond. Likewise, in Experiment 3,
scenes with 2 MIPs/0 MOPs were more confusable than scenes
with 0 MIPs/3 MOPs for the role-relevant, but not the
role-irrelevant, group.

In all of these cases, the similarity of two things is not simply
a relation between the two things; it is a relation between the
two things and the process of comparison. The fact that
similarity develops along a systematic time course suggests that
similarity does not immediately impinge on our perceptual
system. Instead, perceptual and cognitive processes actively
build a conception of similarity. Once we dispatch with the
assumption that similarity is out there in the world, then the
question "How does similarity develop with processing?"
becomes crucial. Our experiments indicate that similarity
develops by placing objects in alignment, and that these
alignments become increasingly influenced by other object and
role correspondences with time.
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