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There is general agreement that structural similarity — a match in relational
structure — is crucial in analogical processing. However, theories differ in their
definitions of structural similarity: in particular, in whether there must be
conceptual similarity between the relations in the two domains or whether
parallel graph structure is sufficient. In two studies, we demonstrate, first, that
people draw analogical correspondences based on matches in conceptual
relations, rather than on purely structural graph matches; and, second, that
people draw analogical inferences between passages that have matching
conceptual relations, but not between passages with purely structural graph
matches.

Introduction

The discovery of common structure is a central aspect of analogical
processing (Gentner, 1983; Gentner & Markman, 1997; Hofstadter, 2001;
Holyoak & Thagard, 1995; Ramscar & Yarlett, 2003). But what exactly enters
into this process? Most theories of analogy agree that analogical processing
involves finding a correspondence between the conceptual structures of the
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two domains compared. As Kokinov and French (2003) put it, “Experimental
work has demonstrated that finding this type of structural isomorphism
between base and target domains is crucial for mapping.” For example, when
comparing

(a) Mary hugged John because she loves him.
(b) Rover nuzzled Sarah because he loves her.

people seek a structurally consistent matchbetween the two representations:
that is, a match that preserves the constraints of one-to-one mapping and
parallel connectivity (Forbus, Gentner & Law, 1995; Gentner & Markman,
1997). One to one mapping requires that each element in one domain match to
at most one element in the other domain.1 For example, if Mary in (a) is placed
in correspondence with Rover, she cannot also be placed in correspondence
with Sarah. Parallel connectivity states that if two predicates are placed in
correspondence, then their arguments must also be placed in correspondence;
that is, there must be like bindings between the two analogs (See Figure 1). For
example, if the two causal relations in (a) and (b) are matched, then their
arguments must also be matched: Loves → Loves and Hug → Embrace.
Likewise, if Loves → Loves, then Mary → Rover and John → Sarah. Almost
all current theories of analogy agree on the importance of structural
consistency, although models vary in whether it is implemented as a hard
constraint (Falkenhainer, Forbus, & Gentner, 1989; Gentner & Markman,
1997) or as a soft constraint (Halford, 1992; Holyoak & Thagard, 1989;
Hummel & Holyoak, 1997; Mitchell, 1993).

Although there is universal agreement that structural similarity is crucial in
analogical processing, there is a dismaying lack of agreement on exactly what
is meant by “structural similarity.” In particular, theories disagree as to whether
conceptual similarity in the relations is required, or whether a pure graph match
is sufficient. To see this issue, contrast the initial sentence pair (a) and (b) with
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1 One principled exception occurs when two or more arguments are relationally
equivalent, and can be collapsed into one: e.g., in “The hydrogen atom is like the
solar system”, the nine planets can be treated as one and placed in correspondence
with the electron.



the additional pair

(a) Mary hugged John because she loves him.
(c) Fred heated the sandwich before he ate it.

Both pairs — (a)/(b) and (a)/(c) — have identical graph structure, as shown in
Figure 1. However, in pair (a)/(b), the corresponding relations in the graph
structure are conceptually similar, whereas in pair (a)/(c), they are not. The
crux of the disagreement is whether pure graph-structure matches like pair (a)
and (c) are processed as analogies. According to Gentner (1983), structural
similarity involves conceptual similarity between corresponding relations.
Thus pair (a)/(b) is analogous, but pair (a)/(c) is not. A contrasting view is that
structural similarity need only entail graph matches (Holyoak & Thagard,
1989; Hummel & Holyoak, 1997). Theories in this camp concede that pure
graph-matching analogies such as (a)/(c) are more difficult to process than
relationally similar pairs, but hold that the processes are nonetheless
fundamentally the same.

This may sound like a simple matter of terminology, but there is more at
stake. The problem of placing two structural representations in correspondence
is one of matching two directed acyclic subgraphs. This kind of graph
matching is known to be in the class of NP-hard problems; the size of the
computation required increases exponentially (or worse) with the size of the
representations. Even if one settles for approximate rather than exact solutions,
the computational burden still grows rapidly with the number of elements.
Thus, any psychologically plausible process for finding analogical
correspondences must control the computational burden of the match. This
issue is particularly important because analogical comparison is often assumed
to be a subcomponent of many other cognitive processes, such as problem
solving and categorization.

Computational models of analogy can reduce the complexity of the graph
match in one of two ways: by using conceptual similarity to constrain the
match, or by using selective projection to reduce the size of the search set. In
the conceptual similarity method, an initial parallel matching process is carried
out that finds all similar pairs (both predicates and elements) in the base and
target, without regard to the structure of the match. Only these conceptually
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matching pairs enter into further processing, thus reducing the effective size of
the problem. This method is used in the Structure-mapping Engine (SME)
(Falkenhainer, Forbus, & Gentner, 1989; Forbus, Ferguson, & Gentner, 1994;
Forbus, Gentner, & Law, 1995).

This initial set of local conceptual matches in SME includes both object
matches and relational matches. It typically includes n-to-1 matches and other
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Figure 1.Graph representations for sentences (a), (b) and (c).
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matches that will later be rejected. In the next stage, structural consistency is
imposed, with the effect of sorting the matches into structurally consistent
kernels. Then these kernels are combined into one or more global mappings.
The systematicity bias is implemented by a trickle-down computation, in
which each matching predicate passes down a fraction of its evidence to its
arguments. Finally, inferences are drawn by a kind of pattern completion from
base to target (For details, see Forbus, Gentner, & Law, 1995; Gentner &
Markman, 1997).  Structural alignment and inference are computationally
intensive. However, because the computation is restricted to the set of
conceptually matching components (rather than processing the entire graphs
for the two domains), the process is rendered tractable. Thus, the initial parallel
conceptual match stage is crucial to SME’s operation.

The second method for simplifying the graph-matching problem is to first
select a particular set of assertions or structures in one domain and project only
that set to the other domain. The order of projection may be chosen on grounds
of systematicity or centrality, or it may simply mirror input order. In either
case, the set of potential matches is reduced, because only the selected
assertions in the first domain need to be considered. Once a predicate is
selected, the best match in the other domain can be determined on the basis of
a purely structural match. In models that use this directional projection method
— e.g., Greiner’s (1988) NLAG, Keane’s (1997) IAM and Hummel and
Holyoak’s (1997) LISA — conceptual similarity is not necessary, though it
may be used to facilitate processing or to decide ambiguous cases. Rather,
what most matters is the selection and ordering of predicates to be mapped.

To summarize, while all extant theories of analogy consider structural
similarity central, this key concept is defined differently in different theories.
On the relational similarityview, as in structure-mapping theory, structural
similarity requires conceptual similarity between corresponding relations. On
the pure graph-isomorphismview, as in IAM and LISA, structural similarity
requires only graph isomorphism; although conceptual similarity between
relations can be helpful, it is not central to the algorithm, nor is it considered
fundamental to the nature of analogy. Returning to our example, both views
would agree that the relationally similar pair [(a) and (b)] is processed as an
analogy. However, the views diverge on the graph-isomorphic pair [(a) and
(c)]. On the relational similarity view, such nonconceptual matches are not
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processed as analogies, but are matched (if at all) as some kind of logical
puzzle. Indeed, SME cannot process such matches in its normal mode of
processing, because it requires conceptual similarity to find potential
correspondences in its initial parallel matching stage. In contrast, on the graph-
isomorphism view, pair [(a) and (c)] is simply a very difficult analogy. For
example, LISA can process such non-conceptually-similar matches as
analogies, although its processing is more efficient when given conceptually
similar analogs (Hummel & Holyoak, 1997, p. 450; Kubose, Hummel &
Holyoak, 2002). Thus what’s at stake here is the kinds of algorithms that are
viable in a computational simulation of analogy.

Comparing graph isomorphism with relational similarity

The question we ask is what constitutes structural similarity in analogy: that
is, what kind of match is used in human analogical processing. To answer this
we need an operationalization of how to detect analogical processing. We
focus on two key phenomena: (1) how people align the representations, as
discussed above; and (2) whether and how people draw inferences from the
match. The generation of candidate inferences is a core aspect of analogical
reasoning (Gentner & Markman, 1997; Kokinov & French, 2001; Holyoak &
Thagard, 1995; Spellman & Holyoak, 1996). The idea is that candidate
inferences are generated during analogical processing by mapping information
from the base to the target that is structurally consistent with the match
(Bowdle & Gentner, 1997; Clement & Gentner, 1991; Markman, 1997;
Ramscar & Yarlett, 2002; Spellman & Holyoak, 1996). Algorithmically, this
can be done either by completing the pattern match achieved in the alignment
process by mapping across further information connected to the matching
relational structure (Falkenhainer et al., 1989) or by copying information from
the base into a queried slot and substituting in corresponding elements of the
target (Holyoak, Novick, & Melz, 1994).

We present two studies aimed at clarifying the nature of structural similarity
in analogy. The logic of our studies is to give people pairs of passages that
permit different kinds of matches — e.g., a pure graph isomorphism vs. a
relational similarity match — and see (1) which correspondences people select;
(2) whether they consider the match a good analogy; and (3) whether the

6 Dedre Gentner, Arthur B. Markman



match leads to any inferences. 
We operationalized graph structure in two different ways across the two

studies. In Experiment 1, we took graph structure to be given by subject-verb-
object sentence grammar. In Experiment 2 we used conceptual representations
to determine the graphs. These two methods can be exemplified by a
simplified example from Keane’s (1997) investigation. Keane asked people to
find correspondences between sets of sentences with non-conceptually similar
predicates: e.g.,

Joel sees Marge. Ruby motivates Doris.
Joel hugs Marge. Ruby knows Doris.
Bert sees Marge. Lana motivates Doris.

Although participants made some errors, most could decide that Joel
corresponds to Ruby and Doris to Marge.2 One way they could have done this
is by using grammatical matches — e.g., by noting that Joel and Ruby are each
the subjects of two different verbs, and that Doris with Marge are the sentential
objects in all three sentences. A second way people might arrive at a graph
match (which we take up in Experiment 2) is to set up conceptual graphs and
match the parallel arguments of corresponding relations. For example, one
might decide seescorresponds to motivates(because there are two instances of
each in their respective sets); this correspondence then dictates that their
arguments (Joel → Ruby; Marge → Doris; Bert → Lana) must match in the
corresponding order. In Experiment 1, we operationalized graph structure as
subject-verb-object sentence grammar. This has the advantage of requiring few
assumptions beyond ordinary syntactic rules.3 In Experiment 2, we used
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match (Keane, 1997), has been used as evidence that these sets qualify as (very
difficult) analogies (Hummel & Holyoak, 1997; Keane, 1997). But our evidence
suggests that these nonconceptual matches are processed very differently from
analogies.
3 The terms “structure” and “syntax” are often used interchangeably in discussions of
representation. That is, the term “syntax of a match” is used to refer to the structure of
the representation. However, this can lead to confusion with the sense of “syntax” as
the grammatical syntax of the sentences that describe the domains. While graph



conceptual graphs. In both cases, we pitted graph isomorphism against
relational similarity.

Experiment 1
In order to explore the distinction between pure graph isomorphism — here

operationalized as grammar-matching — and relational similarity, we gave
people the sentence sets shown in Table 1. These sentences are constructed so
that the correspondences dictated by the semantics of the relations are different
from those dictated by the grammatical roles of the elements in the sentences.
For example, if the sentence pair “Freddy chases after Fido” and “Rover runs
from Bobby” is matched on the basis of grammar, the correspondences are
Freddy → Rover (the grammatical subjects) and Fido → Bobby (the
grammatical objects). However, if people seek to find relational similarity
between conceptual representations, they should represent the two sentences
roughly as chases (Freddy, Fido) and chases (Bobby, Rover). In this case, the
correspondences will be Freddy →Bobby and Fido →Rover.

The questions are, first, whether people base their correspondences on
conceptual-relation matching or on grammatical graph matching, and, second,
whether analogical inferences would follow the conceptual match or the purely
grammatical graph match. To answer these, participants were asked, first, to
state the best correspondences between the sentence sets; and, second, to make
an inference about the second set based on using the first set.

Method

Participants
Participants in this study were 76 undergraduates at Northwestern University

who were paid or received course credit for their time. Of these participants, 12
were dropped because they failed to follow instructions, leaving 64 participants
whose data were analyzed.
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structure and grammatical syntax may sometimes be in registration (as in our
Experiment 1), they need not be [e.g., Jackendoff, 2002, p. 2237]. In this paper we
use the term “structure” as the general term and reserve “syntax” for linguistic
grammatical structure.



Materials and Procedure
The materials for this study were the sentence sets shown in Table 1. The

two sets were constructed to have sentences that were conceptually similar but
used complementary verbs, such that the grammatical subject of one was the
grammatical object of the other. The sets were presented on a single page with
corresponding sentences on the same line as in Table 1. Sentence set A had
four sentences, and sentence set B had three sentences.

After reading the sentence sets, participants were asked to state which item
in set B matched each of the two protagonists from set A: “Freddy” and
“Fido.” Then participants were asked to make a new inference about set B
based on its match to set A.

Results and Discussion

Of the 64 participants in this study, 60 (94%) placed Freddy in
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Table 1.Materials used in Experiment 1

Analogy

A B

Freddy is searching. Rover is hiding.
Freddy catches a glimpse of Fido. Rover attracts the notice of Bobby
Freddy chases after Fido. Rover runs from Bobby.

Freddy fails to catch Fido

Matches

Please state which items in B best match these items from A:
Freddy          ________________________
Fido              ________________________

Inference

Please make a new inference about B, based on A.



correspondence with Bobby and Fido with Rover, χ2(1) = 49.00, p < .05. Thus,
people overwhelmingly placed the objects in correspondence based on the
conceptual similarities between the sentence sets, even though making this
match required going against the correspondences suggested by the syntax of
the sentences. The inference results were also striking. Of the 60 participants
who made conceptual matches, 86% (52/60) made inferences consistent with
their match. In contrast, not one of the four participants who made a graph
match chose to draw any inference. This result suggests a deep difference
between the process of deriving a purely graph-structural match and the
process of deriving a relational similarity match.

These results provide evidence that in analogical matching people align
conceptual relational structures and generate inferences from them, even when
there are readily apparent grammatical matches that oppose these relational
similarity matches. However, striking as they are, the results leave some issues
open. First, the finding that graph isomorphism failed to yield inferences,
whereas relational similarity matches almost always did, is potentially
extremely important, because inference projection is a signature phenomenon
in analogical mapping. However, because only four participants chose the
graph-isomorphic match, this finding is based on a very small pool. Second,
although the results argue against a graph-matching process based on sentence
grammar, they leave open the possibility of pure graph-matching processes
based on conceptual event representations. For example, suppose people in
Experiment 1 had encoded the sentences as chasing events, and had encoded
the arguments as “chaser” and “chasee” rather than in terms of SOV grammar.
In this case the correspondences arrived at by pure graph matching would
mirror those arrived at via relational similarity matching. In Experiment 2, we
consider the other possible realization of pure graph isomorphism, namely,
isomorphism in conceptual graphs.

There are other reasons to replicate the results of Experiment 1. The use of
complementary verb pairs like chase/fleecreated a direct and obvious conflict
between the conceptual matches and the grammatical isomorphism, and this
may have led to some special processing strategy or in some other way have
depressed the rate of isomorphic matching. Finally, the relational match may
have been aided by the match between human names and dog names.
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Although the use of object matches is consistent with a conceptual matching
account, it is important to separate it from the use of relational similarity.
Experiment 2

In Experiment 2 we again compared relational similarity matches with
graph-isomorphic matches, with two major changes. First, we used a between-
subjects design, so that the graph isomorphism could be processed on its own,
without competing conceptual matches. In addition to clarifying the status of
graph matches in generating correspondences, this will also permit a better
assessment of whether graph matches lead to inferences. Second, we assumed
conceptual representations (rather than sentence-grammatical structure) as the
basis for the graph-matches. We also made other improvements such as
avoiding complementary verbs and using neutral object names.

We focused on the generation of inferences in this study, both because it is a
central issue and because whether and which inferences people draw is
diagnostic of their correspondences. To the extent that pure graph isomorphism
can be shown to yield humanlike analogical inferences, it becomes a more
viable prospect for a psychological mechanism of analogy. In order to asses
whether participants’ inferences fit human patterns, we included in the base
passage an extra piece of information not present in the target, that was
causally connected to the rest of the base passage. This allowed us to
investigate not only whether participants would draw inferences, but whether
the inferences would be drawn from shared systems of matches. There is
considerable evidence that people prefer interpretations based on connected
systems of matches, and that their inferences are drawn from shared systems
rather than from isolated matches (Clement & Gentner, 1991; Keane, 1996;
Markman, 1997). Thus, to the extent that participants’ inferences show this
preference for systematicity (Gentner, 1983), this will be evidence for the
psychological plausibility of their processing method.

In Experiment 2 we used the materials in Table 2. Passage 1 describes a
battle between the Fox corporation and the Time-Warner corporation.
Participants compared this passage with either Passage 2a or Passage 2b.
Comparing Passage 1 and Passage 2a affords a match based on relational
similarity: e.g., just as Time-Warner ownsa cable system and a news network,
Jason ownsan insurance company and an office building. Just as the Fox
Corporation wantsspace on Time-Warner’s cable system, Arthur wantsan
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office in Jason’s building. In contrast, the comparison between Passage 1 and
Passage 2b affords a pure graph-isomorphism, with no relational similarity. In
this case, Jason corresponds to Time-Warner and Arthur to Fox on the basis of
the parallel syntactic structure between the relations in the two domains. For
example, ‘Time-Warner ownsa cable system and a news network’ in Passage
1 corresponds to ‘Jason goes tocasinos and baseball games’ in Passage 2b.

The key question was the degree to which these two kinds of matches would
support inferences. To test this, we asked participants to make an analogical
inference and assessed whether they did so: that is, did they propose any new
information about second passage on the basis of the first. To increase the
chances of such inferences, and also to permit a more specific question, we
placed an extra, nonmatching piece of information in Passage 1: namely, that
Time-Warner does not want to allow Fox on its cable system. This is a shared
system fact, because it is connected to the system of matches between the two
passages. Thus this manipulation also allows us to test whether the two kinds
of match are sensitive to systematicity. By design, the shared system fact can
be unambiguously mapped to both of the second passages. When carried over
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Table 2.Materials for Experiment 2

Passage 1
Currently, the Fox corporation is feuding with the Time-Warner corporation. Time-
Warner owns a cable system and a news network. Fox owns a news network, and
wants space on the Time-Warner system to air its programs. Time-Warner does not
want to allow the Fox news network on its cable system. To make matters worse,
Time-Warner is trying to hire away Fox’s best employees. Time-Warner offers
stock options to its employees making it an attractive place to work.

Passage 2a
Arthur and Jason are fighting. Jason has an insurance company and an office
building. Arthur has an insurance company. Arthur wants to lease an office in
Jason’s building so he can conduct business.

Passage 2b
Arthur has always admired Jason. Jason often goes to casinos and baseball games.
Arthur goes to casinos and he likes to play baseball at games that Jason is watching
to show off his skills.



from Passage 1 to 2a, it leads to the inference that Jason does not want to lease
space in his building to Arthur’s insurance company; carried from Passage 1 to
2b (by making substitutions for the corresponding (but dissimilar) relations in
the domains), it leads to the inference that Jason does not want Arthur to watch
his games. Each of these is a reasonable continuation of the target passage.
Thus, the question is how the relational similarity group and the graph
isomorphic group will fare with respect to (1) whether they generate
inferences; and (2) whether they generate shared-system inferences.

Method

Participants
The participants were 54 undergraduates at the University of Texas at Austin

who received course credit. Of these, 25 were randomly assigned to the
relational similarity condition and 29 to the graph match condition.

Procedure
Participants were given a sheet containing either Passages 1 and 2a or

Passages 1 and 2b (Table 2). They were told “Please read the following two
passages. In the space below, please write out anything that you would predict
about what might happen in Passage 2 based on what happened in Passage 1.
If you cannot think of any predictions, just write ‘None.’” After writing their
predictions, they rated their confidence in these predictions on a scale from 1
(low) to 7 (high).

Results and Discussion

The responses were first categorized as analogical inferences (inferences
drawn from the base passage as instructed) and extraneous inferences not
drawn from the base. (Typically, these last were plausible completions of the
target based on general background knowledge.) We next scored each
analogical inference as to whether it was a shared system inference, a
nonshared system inference or an inference unrelated to the base domain.
(Participants’ responses could fall into more than one category.) As shown in
Table 3, relational similarity participants (M = .92) made five times as many
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analogical inferences as did graph match participants (M = .17). More
specifically, relational similarity participants (M = .64) made four times as
many shared-system inferences as did graph match participants (M = .14), ☜2

= 14.51, p < .05. The rate of shared system inferences in the relational
similarity condition is comparable to what has been observed in other studies
of analogical inference (e.g., Clement & Gentner, 1991; Markman, 1997).
Other analogical inferences (nonshared system inferences) were also far more
prevalent in the relational-similarity condition (M = .28) than in the graph
match condition (M = .03), χ2 = 6.41, p< .05.

If participants failed to see any connection between the two passages, we
would expect them either to draw inferences based only on the target passage
(and unrelated to the base passage), or else no inferences at all. Among graph
match participants, 45% drew only extraneous (nonanalogical) inferences and
41% drew no inferences. The corresponding figures are 28% and 4% for
relational similarity participants. Thus, participants in the relational similarity
condition made more shared-system inferences than either nonshared-system
inferences or extraneous inferences, showing the typical sensitivity to
systematicity observed in analogical mapping. In contrast, subjects in the graph
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Table 3.Results of Experiment 2: Number (and mean number) of subjects making
no inferences or only extraneous inferences, and number (and mean per subject) of
analogical inferences by type.

Percent Percent with 
Mean Number of Analogical 

Inferences Per Subject
with no only Extraneous 

Shared Other Inferences
TotalInferences Inferences

System from Base

Relational 
Similarity 4% 28% 0.64 0.28 0.92

Match 
(N=25)

Graph 
Match 41% 45% 0.14 0.03 0.17
(N=29)



match condition made more extraneous inferences than either shared or
nonshared-system inferences.

This pattern is further illuminated by participants’ confidence ratings. If
participants are sensitive to systematicity (as both the SME and IAM models
predict), they should be most confident about shared-system inferences. This
prediction was borne out for the relational similarity participants. For the
shared system inferences made by relational similarity participants, the mean
confidence rating was 5.13 (out of 7), as compared with a mean rating of 3.09
for their extraneous inferences. Graph match participants showed no such
preference: the mean confidence rating for their shared-system inferences was
2.50, as compared with 3.96 for their extraneous inferences.

These results show a strikingly different pattern of inferencing between
relational similarity matches and graph matches. Whereas 68% of the relational
similarity participants drew an analogical inference, 86% of the graph match
participants either drew no inferences or drew only extraneous inferences.
Thus, even when explicitly encouraged to draw inferences from the analogy,
most of the people in the graph match condition either declined entirely or
simply invented facts about the target story. The confidence ratings were
consistent with this pattern. Whereas relational similarity participants had high
confidence in shared system analogical inferences, even those graph match
participants who did make inferences showed no preference for analogical
inferences over nonanalogical inferences (extraneous inferences drawn purely
from the target).

General Discussion

Our goal here is to clarify the nature of structural similarity in analogical
comparison. In Experiment 1, pure graph matches based on grammatical
structure were pitted against relational similarity matches within-subjects.
Participants overwhelmingly made correspondences based on relational
similarity, not graph isomorphism. Further, nearly all the 60 participants who
made relational similarity correspondences went on to draw an inference; in
contrast, none of the 5 participants who drew graph-isomorphic
correspondences did so. In Experiment 2, we compared conceptual graph
matches with relational similarity matches in a between-subject design to allow
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for the possibility that the poor showing for graph matches in Experiment 1
resulted from competition with the conceptual match. In this study, every effort
was made to ‘level the playing field’ between relational similarity and graph
matching. The graph-isomorphic passages contained no competing conceptual
similarity alignment; the only good alignment was the graph match. Further,
the passages were designed such that the graph-isomorphic correspondences
yielded a plausible inference, just as did the correspondences in the relational
similarity match. Yet when given instructions to seek an analogical inference,
the two groups showed a clear divergence. Among participants given
relationally similar passages, 92% drew analogical inferences — inferences
from the base to the target. In contrast, among participants given the graph
isomorphic passages, only 17% made analogical matches. In fact, 41% failed
to draw anyinference, despite instructions encouraging them to do so. Further,
even when participants actually made an inference, most of the time this
inference was simply a plausible completion of the target story rather than one
based on an analogy between the base and target.

Finally, another key difference between the two groups was that the
similarity participants showed the systematicity bias that is typical of
analogical mapping. They not only tended to draw the inference that belonged
to the connected system of predicates shared by the two passages, but they
were also highly confident of this shared-system inference when they did so. In
contrast, only a small minority of the graph matching participants drew the
shared system inference, and their confidence in that inference was low. In
sum, people are remarkably unwilling to draw inferences from nonconceptual
mappings, even when instructed to do so; and when they do draw inferences,
they do not show the normal systematicity bias. All of this suggests that when
dealing with these nonmeaningful pairs, people are not engaging in normal
analogical processing, but rather are solving a rather artificial puzzle.

These findings support the theoretical claim that conceptual similarity is
crucial in human analogical processing. One implication of these results is that
it is unnecessary, and possibly counterproductive, to test computational
simulations of analogy on graph-matching pairs that have no conceptual
similarity. We suggest that a model’s ability to handle pure graph matches
unsupported by conceptual similarities is irrelevant to its ability to capture
human analogical mapping processes. Attempts to improve a model’s
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performance on graph matches may result in distortions of its central process
account.

These findings invite further questions. For example, while relational
similarity may be the chief contributor to structural alignment, other kinds of
conceptual similarity also enter into analogical processing. However, the
outcome of an analogical comparison can be influenced by object similarities
as well as by relational similarity (e.g., Bassok, Wu & Olseth, 1995; Bassok &
Medin, 1997; Keane, Hackett, & Davenport, 2001; Markman & Gentner,
1993; Rattermann & Gentner, 1998). A natural question is whether conceptual
similarity matters more for relations than for objects, as structure mapping-
claims or whether all matches count equally. Recent research by Gentner and
Kurtz (in press) bears out the claim that relational similarity matters more than
object similarity. They asked participants to judge whether two events, each
expressed in a single sentence, were or were not analogical. The degree to
which participants considered two events analogical varied strongly with the
similarity of their relations, as expressed in the verbs, but hardly at all with the
similarity of the objects, as expressed by the object nouns.

The Gentner and Kurtz research also addressed another question that follows
from this research is what degree of synonymity is necessary to achieve a
conceptual match? They found that pairs with closely synonymous relations
(e.g., Greg built the deck/Chad constructed the deck) were almost always
accepted as analogies, and pairs with very dissimilar relations (e.g., Greg built
the deck/Chad swept the deck) were almost never accepted. Intriguingly, pairs
whose relations were of intermediate similarity — e.g., Greg built the
deck/Chad repaired the deck — were accepted about half the time; and further,
participants required much longer to decide for these pairs than for the very
close or very far pairs — suggesting that participants may have re-represented
the meanings to seek conceptual overlap.

In sum, these findings support the view that analogical processing is driven
by the presence of conceptual similarities — particularly relational similarities
— between the base and target domain. As Polya (1954 , p.13) put it, “… two
systems are analogous, if they agree in clearly definable relations of their
respective parts.”
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