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The mechanisms of
analogical learning

DEDRE GENTNER

Ju is widely accepted that similarity is a key determinant of transfer.

: { [n this chapter I suggest that both of these venerable terms - similarity
S and transfer — refer to complex notions that require further differ-

entiation. | approach the problem by a double decomposition: de-
composing similarity into finer subclasses and decomposing learning
by similarity and analogy into a set of component subprocesses.

One thing reminds us of another. Mental experience is full of mo-
ments in which a current situation reminds us of some prior expe-
rience stored in memory. Sometimes such remindings lead to a change
in the way we think about one or both of the situations. Here is an
example reponied by Dan Slobin (personal communication, April
1986). His daughter, Heida, had traveled quite a bit by the age of 3.
One day in Turkey she heard a dog barking and remarked, “Dogs in
Turkey make the same sound as dogs in America. ... Maybe all dogs
do. Do dogs in India sound the same?” Where did this question come
from? According to Slobin’s notebook, “She apparently noticed that
while the people sounded different from country to country, the dogs
did not.” The fact that only humans speak different languages may
seem obvious to an adult, but for Heida to arrive at it by observation
must have required a series of insights. She had to compare people
from different countries and note that they typically sound different.
She also had to compare dogs from different countries and note that
they sound the same. Finally, in order to attach significance to her
observation about dogs, she must have drawn a parallel - perhaps
implicitly — between dogs making sounds and humans making sounds
so that she could contrast: “As you go from country to country, people
sound different, but dogs sound the same.” Thus her own experiential
comparisons led her to the beginnings of a major insight about the
difference between human language and animal sounds.

This example illustrates some of the power of spontaneous re-
mindings. Spontaneous remindings can lead us to make new infer-
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ences, to discover a common abstraction, or, as here, to notice 3
important difference between two partly similar situations (e.g., Roas
1984, this volume). The ultimate aim of this chapter is to trace learning
by analogy and similarity from the initial reminding to the final stors e
of some new information. Spontaneous analogical learning' can be
decomposed into subprocesses of (a) accessing the base* system; (b)
performing the mapping between base and target; (c) evaluating the
match; (d) storing inferences in the target; and sometimes, (e) ex-
tracting the commonalities (Clement, 1981, 1983; Gentner, 1987,
Gentner & Landers, 1985; Hall, in press; Kedar-Cabelli, 1988).

This breakdown suggests that we examine the subprocesses inde.
pendently. Once this is done, it will become clear that different sup.
processes involved in analogical learning are affected by very differen; !
psychological factors. Although the chronological first step in an ex.
periential learning sequence is accessing the potential analog, | shall
postpone the discussion of access until later in this chapter. Instead,
I begin with steps 2 and 3: analogical mapping and Judging analogical
soundness. This is the logical place to start, because it is these processes
that uniquely define analogy and allow us to see distinctions among
different kinds of similarity. It turns out that the theoretical distinc.
tions necessary for talking about analogical mapping are also useful
for talking about other analogical subprocesses.

The plan of the chapter is, first, to describe the core structure- *
mapping theory of analogical mapping, using a computer simulation
to make the points clear; second, to offer psychological evidence for

" the core theory of analogical mapping; and, finally, to discuss research

that extends the framework to the larger situation of analogical
learning.

NS

Analogical mapping

The theoretical framework for this chapter is the structure-mapping
theory of analogy (Gentner, 1980, 1982, 1983, 1987; Gentner & Gent-
ner, 1983).7 As Stephen Palmer (this volume) states, structure-map-
ping is concerned, first, with what Marr (1982) called the
“computational level” and what Palmer and Kimchi (1985) call the
“informational constraints” that define analogy. That is, structure-
mapping aims to capture the essential elements that constitute analogy
and the operations that are computationally necessary in processing

Editors’ note: The terms “base” and “source” are used interchangeably both in the
ficld in general and in this volume in particular.

The mechanisms of analogical learning 201

' palogy The question of how analogies are processed in real time ~
2 .

that is, the question of which algorithms are used, in Marr‘s.tcrrrg!-
ology. or which behavioral constrai.ms apgly, in Palmer and Kimcht's
:‘ﬂminology — will be deferred until I?lcr.m the chapter. ]

The central idea in structure-mapping is that an .analogy is a map-
ing of knowledge from one domain ((ht? base) into another (the
wrget), which conveys that a system of rclauqns that holds among (h.c
pase objects also holds among the target obj-cctf. Thus an analogy is
a way of focusing on relational commonalties |ndcp¢;ndcnlly .of the
objects in which those relations arc.embedded. In interpreting an
analogy, people seek to put th%- objects of the base in one-to-one
correspondence with the objects in the target so as to obtain the max-
imum structural match. Objects are placcd- in correspondence by vir-
tue of their like roles in the common relational structure; there dogs
not need to be any resemblance between the target objects and their
corresponding base objects. Central to the mapping process is the
principle of systematicity: People prcfcr' to map Cf)nncc(e(‘i systems of
relations governed by higher-order relations with inferential import,
rather than isolated predicates. o ' _

Analogical mapping is in general 2 combination .of matching exist-
ing predicate structures and importing new predicates (carry-over).
To see this, first consider the two extremes. In pl.lre matching, the
learner aiready knows something about both doma_lms. The analogy
conveys that a relational system in the target domain matches one in
the base domain. In this case the analogy serves to focus attention on
the matching system rather than to convey new knowledge. In pure
carry-over, the learner initially knows something about the base domain
but little or nothing about the target domain. The analogy specifies
the object correspondences, and the learner simply carries across a
known system of predicates from the base to fhc target. This is the
case of maximal new knowledge. Whether a given analogy is chiefly
matching or mapping depends, of course, on the state qf knowledgﬁ
in the learner. For example, consider this analogy by Oliver Wende
Holmes, Jr.: “Many ideas grow better when transplanted into another
mind than in the one where they sprang uR." For some readers, this
might be an instance of pure mapping: Bx importing the k‘nowle.dgc
structure from the domain of plant growing to the domain of idea
development they receive a completely new thou.ghf about the latter
domain. But for readers who have entertained similar thoughts the
process is more one of matching. The effect of the aqalogy is then
not so much to import new knowledge as to focus attention on certain
portions of the existing knowledge. Most explanatory analogies are a
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combination of matching and carry-over. Typically, there is a partig)
match between base and target systems, which then sanctions the
importing of further predicates from the base to the target. .
A clarification may be useful here. A possible misreading is that the
systematicity principle implies that the same set of predicates should
always be mapped from a given base domain, regardless of the targe
(Holyoak, 1985). But, by this construal, the interpretation of an anaj-
ogy would depend only on the base domain, which is patently false,
except in the case when nothing is known about the target (the pure
carry-over case). In the normal case, when there is information about
both base and target, a given base—target pair produces a set of match-
ing predicates. Changing either member of the pair produces a dif-
ferent set of matching predicates. Thus, systematicity operates as 3
selection constraint: Among the many possible predicate matches be- !
tween a given base and target, it favors those that form coherent
systems of mutually interconnecting relations (see Clement & Gent-
ner, 1988; Gentner & Clement, in press).
To illustrate the structure-mapping rules, we turn to a specific ex-
ample: the analogy between heat Row and water flow. (See Gentner
& Jeziorski, in press, for a discussion of Carnot’s use of this analogy
in the history of heat and temperature.) Figure 7.1 shows a water-
Aow situation and an analogous heat-flow situation.
I will go through this analogy twice. The first time I give the analogy
as it might occur in an educational setting in which the learner knows
. a fair amount about water and almost nothing about heat flow. Here
the learner is given the object correspondences between water and
heat and simply imports predicates from the water domain to the heat
domain. This is a case of pure carry-over. The second time, to illustrate
the computer simulation, I give the analogy as it might occur with
the learner having a good representation of the water domain and a
partial representation of the heat domain. Here the analogy process
is a combination of matching existing structures and importing new
predicates (carry-over).

The heatiwater analogy, Pass 1: pure carry-over. Figure 7.2 shows
the representation a learner might have of the water situation. We
assume that the learner has a very weak initial representation of the
heat situation and perhaps even lacks a firm understanding of the
difference between heat and temperature. This network represents
a portion of what a person might know about the water situation
illustrated in Figure 7.1.3

The learner is told that heat flow can be understood just like water
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. T . 4
Figure 7.1. Examples of physical situations involving (a) water flow an
hg: flow (adapted from Buckley, 1979, pp. 15-25).

flow, with temperature in the heat situation playing the role of pres-
sure in the water situation. The learner is also given the object

correspondences

water — heat; pipe = metal bar;
beaker — coffee; vial = ice

as well as the function correspondence
PRESSURE ~ TEMPERATURE
Now the learner is in a position to interpret the analogy. Even with

the correspondences given, there is still some active processing re-
quired. In order to comprehend the analogy, the learner must
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condition result

FLOW

goal object path source

4
water pipe

lkor \vnor vhl

db

Figure 7.2. A representation of the water situation. Predicates are written in
upper case and circled; objects are written in lower case and uncircled.

* ignore object auributes; e.g., CYLINDRICAL (beaker) or
LIQUID (coffee)

* find a set of systematic base relations that can apply in the wrget,

using the correspondences given. Here, the pressure-dilference
structure in the water domain

CAUSE {GREATER [PRESSURE (beaker), PRESSURE (vial)),
[FLOW (water, pipe, beaker, vial)]}

:‘s mapped into the temperature-difference structure in the heat
omain

CAUSE {GREATER [TEMP (colfee), TEMP (ice),
[FLOW (heat, bar, coffee, ice))}

+ and discard isolated relations, such as
GREATER [DIAM (beaker), DIAM (vial)}
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condition result

GREATER THAN FLOW

TEMPERATURE

goeal object path source
obhct obhcl

hul bar
co"n ice cubo

Figure 7.3. A representation of the heat situation that results from the heat/
water analogy.

Figure 7.3 shows the resulting causal representation of heat flow in-
duced by the analogical mapping.

There are several points to note in this example. First, the object
correspondences — heat/water, beaker/coffee, vial/ice, and plpe/bar -
and the function corrcspondence PRESSURE/TEMPERATURE" are de-
termined not by any intrinsic similarity between the objects but by
their role in the systematic relational structure. Systematicity also de-
termines which relations get carried across. The reason that

GREATER [PRESSURE (beaker), PRESSURE (vial)]

is prescrvcd is that it is part of a mappable system of higher-order
constraining relations: in this case, the subsystem governed by the
higher-order relation CAUSE. In contrast, the relation

GREATER [DIAM (beaker), DIAM (vial)}

does not belong to any such mappable system and so is less favored
in the match.
Second, the order of processing is probably variable. Even when

the learner is given the object correspondences first, there is no ob-
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Table 7.1. Kinds of domain comparisons

—— st
——— —_—

Auributes  Relations

Example

——
———
———

Literal similarity Many Many Milk is like water

Analogy Few Many Heat is like water

Abstraction Few Many Heat flow is a through-variable

Anomaly Few Few Coffec is like the solar system

Mere appearance Many Few The glass wabletop gleamed like
water

— ——

vious constraint on the order in which predicates should be mapped.
This is even more the case when the learner is not told the object
correspondences in advance. In this case, as exemplified in the next
pass through this analogy, the object correspondences are arrived at
by first determining the best predicate march - that is, the most sys-
tematic and consistent match. I suspect that the order in which
matches are made and correspondences.tried is extremely opportu-
nistic and variable. It seems unlikely that a fixed order of processing
stages will be found for the mapping of coniplex analogies (see Gru-
din, 1980; Sternberg, 1977).
Third, applying the structural rules is only part of the story. Given
a potential interpretation, the candidate inferences must be checked
for validity in the target. If the predicates of the base system are not
" valid in the target, then another system must be selected. In goal-
driven contexts, the candidate inferences must also be checked for
relevance to the goal.

Kinds of similar}
Distinguishing different kinds of similarity is essential to understand-
ing learning by analogy and similarity. Therefore, before going
through the heat/water analogy a second time, I lay out a decompo-
sition of similarity that follows from what has been said. Besides anal-
ogy, other kinds of similarity can be characterized by whether the two
situations are alike in their relational structure, in their object de-
scriptions, or in both. In analogy, only relational predicates are
mapped. In literal similanity, both relational predicates and object at-
tributes are mapped. In mere-appearance maiches, it is chiefly object
autributes that are mapped. Figure 7.4 shows a similarity space that
summarizes these distinctions. Table 7.1 shows examples of these

BN
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Relations Shared s—eeuep

Attributes Shared =——=me=p

Figure 7.4. Similarity space: classes of similarity based on the kinds of pred-
icates shared.

different kinds of similarity. The central assumption is that it is not
merely the relative numbers of shared versus nonshared predicates
that matter — although that is certainly important, as Tversky (1977)
has shown — but also the kinds of predicates that match.

Analogy is exemplified by the water/heat example discussed above,
which conveys that a common relational system holds for the two
domains: Pressure difference causes water flow, and temperature dif-
ference causes heat flow. Literal similanity is exemplified by the com-
parison “Milk is like water,” which conveys that much of the water
description can be applied to milk. In literal similarity, both object
attributes, such as FLAT TOP (water) and CYLINDRIC iL (beaker),
and relational predicates, such as the systematic causal structure dis-
cussed above, are mapped over. A mere-appearance match is one with
overlap in lower-order predicates — chiefly object attributes® — but not
in higher-order relational structure as in “The glass tabletop gleamed
like water.” Mere-appearance matches are in a sense the opposite of
analogies. Such matches are sharply limited in their utility. Here, for
example, little beyond physical appearance is shared between the ta-
bletop and water. These matches, however, cannot be ignored in a
theory of learning, because they often occur among novice learners.
One further type of match worth discussing is relational abstraction.
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An example is the abstract statement, “Heat is a through-variable »
which might be available to a student who knew some system dynam.
ics. This abstraction, when applied to the heat domain, conveys much
the same relational structure as is conveyed by the analogy: that hey
(a through-variable) can be thought of as a flow across a potentia)
difference in temperature (an across-variable). The difference is tha;
the base domain contains only abstract principles of th rough-variables
and across-variables and variables; there are no concrete properties
of objects to be left behind in the mapping.

These contrasts are continua, not dichotomies. Analogy and litera)

similarity lie on a continuum of degree-of-attribute-overlap. In boih
cases, the base and target share common relational structure. If tha
is all they share, then the comparison is an analogy (assuming, of
course, that the domains are concrete enough to have object descrip-
tions). To the extent that the domains also share common object
descriptions, the comparison becomes one of literal similarity. An.
other continuum exists between analogies and relational abstractions,
In both cases, a relational structure is mapped from base to target. If
the base representation includes concrete objects whose individual
atributes must be left behind in the mapping, the comparison is an
analogy. As the object nodes of the base domain become more abstract
and variable-like, the comparison becomes a relational abstraction.
We turn now to the second pass through the analogy. There are
two innovations. First, in this pass I describe the way our computer
simulation processes the heat/water example. Here we move from
- informational constraints to behavioral constraints. (See Palmer, this
volume.) Second, in this pass I assume that there is some prior knowl-
edge of both base and target; thus this pass illustrates a combination

of matching and carry-over. Before giving the algorithm, I describe
the representational conventions.

Representation conventions. The order of an item in a repre-
sentation is as follows: Objects and constants are order 0. The order
of a predicate is 1 plus the maximum of the order of its arguments.
Thus, if x and y are objects, then GREATER THAN (x, ) is first-order.
and CAUSE [GREATER THAN (x, ), BREAK(x)] is second-orde:. Typ-
ical higher-order relations include CAUSE and IMPLIES. On this def-
inition, the order of an item indicates the depth of structure below
it. Arguments with many layers of justifications will give rise to rep-
resentation structures of high order.

A typed predicate calculus is used in the representation. There are
four representational constructs that must be distinguished: entities,
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which represent individuals and constants, and three types of pred-
. .tes. Predicates are further subdwldeq tnto lrl‘n.h-funclwnalipre&
Fales (relations and attributes) and functions. Entities (e.g., Eddie, sfde
- ket) are logical individuals: the objects and.constanfs of a domain.
Typical entities include pieces of stuff, 'indivndual objects or beings,
yd logical constants. Attributes and relations are predicates that range
- r truth values; for example, the relation HIT(cue §all. ball) can be
OV:Iualed as true or false. The difference is that attributes take one
::gumem and relations take two or more arguments. Informally,
auributes describe properties of gmiues. such as RED or SQUARE.
Relations describe events, comparisons, or states applymg to two or
more entities or predicates. First-order relations take objects as ar-
guments: for example, HIT(ball, table) and INSIDE (ball, pockc:’).
Higher-order relations such as IMPLIES and CAUSE take otl}cr prc" -
icates as their arguments: for example, CAUSE [HIT (cue stick, ba:‘ )
ENTER (ball, pocket)]. Functions map one or more entities into anot e':
entity or constant. For example, SPEEp(ball) docs not have a m::
value; instead, it maps the physical object ball into the quantity that
describes its speed. Functions are a-uscful rcprc_semauonal device
because they allow either (a) evaluating the function to proc!uce }a‘n
object descriptor, as in HEIGHT (Sam) = 6 feet, or (l.>) using the
unevaluated function as the argument of other predicates, as in
GREATER THAN [HEIGHT(Sam), HElGHT(Gcorgc)_]. )
These four constructs are all treated dl.ﬂ'ercmly in the fmaloglcal
mapping algorithm. Relations, inclu'dmg hlgher-or('ier rela(mns;lmu?t
match identically. Entities and functions are pla.ced in correspondence
with other entities and functions on the basis of the surrounding
relational structures. Attributes are i.gnorcd.‘Th.us there are three
levels of preservation: identical matching, plaalng in correspondenic(‘l.
and ignoring.” For example, in the analogy ."The wrcst!cr bour;‘c
off the ropes like a billiard ball off the wall,” the relations, such as
CAUSE [HIT(wrestler], wrestier2), COLLID!:Z(Wl;estler2, ropes)] néus‘;
match identically. For objects and for functions, we attempt to . ;1
corresponding objects and functions, which need not be identical: for
example, cue ball/wrestler and SPEED.(cue I')all)IFOR(,E(wrestlcrl ). (\b
tributes are ignored; we do not seek identical or even corrgspondmg
attributes in the billiard ball for each of the wn_'cstlcrs attributes. To
sum up, relations must match, objects and functions must correspond,
i re ignored. )

3“:1[ a:;lri'nl:‘;)e:t:n: lg note that these rcpresct.ualions. inFludlng the
distinctions between different kinds of predicates, are fmend'ed o
reflect the way situations are construed by people. Logically, an n-
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place relation R(a,b.c,) can always be represented as a one-place pred,
icate Q(x), where Q(x) is true just in case R(a,b.c,) is true. Further, a
combination of a function and a constant is logically equivalent 10 2,
attribute; for example, applying the function EQUALS [COLOR(ball),
red] is logically equivalent to stating the attribute RED(ball). Our aimy’
is to choose the representation that best matches the available evidence
as (o the person’s current psychological representation. As Palmer
(this volume) points out, these representational decisions are Crucia}
to the operation of the algorithm. Differences in the way things are -
construed can cause two situations to fail 0 match even if they are
informationally equivalent. Thus the model would fail to realize tha
HOTTER THAN(a,}) is equivalent to COLDER THAN(b,a). This as.
sumption may not be as implausible as it initially seems. Empirically,
we know that logical equivalence does not guarantee psychological
equivalence. Perhaps one reason that people sometimes miss potential
analogies (as discussed below) is that their current representations of
base and target limit the kinds of analogical matches they can make.
Requiring perfect relational identity in the matching rules allows
us to capture the fact that potential analogies are often missed, for
the more exactly the representations must match, the less likely anal-
ogies are (o be seen. More important, the relational identity require- |
ment keeps us from concealing homunculus-like insight in the
maicher. As soon as we move away from perfect matching we are °.
faced with a host of difficult decisions: How much insight do we give
the matcher? How much ability to consider current contextual factors?
How much tolerance for ambiguity? In short, we lose the considerable
advantages of having a simple, low-cost matcher. But how can we
capture the intuition that people sometimes can use analogy creatively
to surmount initially differem representations? Burstein (1983) has
explored one interesting method: He allows similar predicates to
match and then generalizes the match. For example, as part of a larger
analogy, inside in the spatial sense is matched with inside in the abstract
sense of a variable containing a value. Then a more general notion
of containment is abstracted from the match. This is an auractive
notion that deserves further study. However, it does run the risk of
adding considerable computational ambiguity. |
One way to add flexibility without sacrificing the simple matcher is
to add some tools for re-representation that are external to the matcher
_ itself. Then, if there were good reason to suspect a possible analogy,
a relation currently represented as COLDER THAN(b,a) could be re-
represented as HOTTER THAN(a,b). An alternative re-representation
would decompose it into GREATER THAN [TEMP(a), TEMP(b)).
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WATER FLOW HEAT FLOW
CAUSE
FLOW (beaker.vial, GREATER
GREATER vosker.viel
PRESSURE (beaker) PRESSURE(vial) TEMP (coffee) TEMP (ice cube)
GREATER FLOW(cotfee, ice cube,heat,bar)
DWMETER (beaker) DIAMETER (vial)
LIQUID LIQUID {coffes)
mr-too("(::zr) FLAT-TOP (coftes)
CLEAR (besker)

Figure 7.5. Representations of water and heat given to the structure-mapping
engine.

In this way a partial analogy could lead to the discovery that two
relations hitherto seen as different in fact refer to the same underlying
dimension. This would allow us to model the use of a@ogy in re-
construing one situation in terms of anothgr. Al? interesting corollary
of this approach is that it suggests a way in which analogx could act
as a force toward building uniform domain represemations, both
within and across domains.

The structure-mapping engine. The structure-mapping engine
(SME) is a simulation of the structure-mapping process writien by
Brian Falkenhainer and Ken Forbus (Falkenhainer, Forbus, & Gent-
ner, 1986, in press; Gentner, Falkenhainer, & Skorstad, 1987). Here
it is given the representations of the base and 1arget shown in Figure
7.5. As in the previous pass (Figure 7.2), we assume the learncr.has
a fair amount of knowledge about water. In contrast to the previous
pass, we now assume some initial knowledge about heat: The learner
knows that the coffee is hotter than the ice and that heat will flow
from the coffee to the ice. Note, however, that the representations
contain many extraneous predicates, such as LIQUID(water) and



212 DEDRE GENTNER

LIQUID(coffee). These are included to simulate a learner’s uncertainty
about what matters and to give SME the opportunity to make erro.
neous matches, just as a person might.

In addition to modeling analogy, SME can be used with literaj
similarity rules or mere-appearance rules. Both analogy rules ang
literal similarity rules seek matches in relational structure; the differ.
ence is that literal similarity rules also seek object-attribute matches,
Mere-appearance rules seek only object-attribute matches. [ will de.
scribe the process using literal similarity rules, rather than pure anal.
ogy, because this offers a better demonstration of the full operation
of the simulation, including the way conflicts between surface and
structural matches are treated.

The heat/water analogy, Pass 2: matching plus carry-over. Given
the comparison “Heat is like water,” SME uses systematicity of rela-
tional structure and consistency of hypothesized object correspon-
dences to determine the mapping. The order of events is as follows:

1. Local matches. SME stars by looking for identical relations
in base and target and using them to postulate potential matches. For
each entity and predicate in the base, it finds the set of entities or
predicates in the target that could plausibly match that item. These
potential correspondences (match hypotheses) are determined by a set

of simple rules: for example,

1. If two relations have the same name, create a match hypothesis.

2. For every maich hypothesis between relations, check their corre-
sponding arguments; if both are entities, or if both are functions,
then create a match hypothesis between them.

For example, in Figure 7.5, Rule 1 creates match hypotheses between
the GREATER-THAN relations occurring in base and target. Then
Rule 2 creates match hypotheses between their arguments, since both
are functions. Note that at this stage the system is entertaining two
different, and inconsistent, match hypotheses involving GREATER
THAN: one in which PRESSURE is matched with TEMPERATURE and
one in which DIAMETER is matched with TEMPERATURE. Thus, at
this stage, the program will have a large number of local matches. It
gives these local matches evidence scores, based on a set of local evi-
dence rules. For example, evidence for a match increases if the base
and target predicates have the same name. More interestingly, the evi-
dence rules also invoke systematicity, in that the evidence for a given
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match increases with the evidence for a match among the parent
relations — that is, the immediately governing higher-order relations.

2. Constructing global matches. The next stage is to collect sys-
tems of matches that use consistent entity pairings. SME first prop-
agates entity correspondences up each relational chain to create
systems of match hypotheses that use the same entity pairings. It then
combines these into the largest possible systems of predicates with
consistent object mappings. These global matches (called Gmaps) are
SME’s possible interpretations of the comparison.

An important aspect of SME is that the global matches (Gmaps)
sanction candidate inferences: predicates from the base that get mapped
into the target domain. These are base predicates that were not orig-
inally present in the target, but which can be imported into the target
by virtue of belonging to a system that is shared by base and target.
Thus, associated with each Gmap is a (possibly empty) set of candidate
inferences. For example, in the “winning” Gmap (as discussed below),
the pressure-difference causal chain in water is matched with the
temperature-difference chain in heat, and water flow is matched with
heat flow. However, you may recall that the initial heat representation
lacked any causal link between the temperature difference and the
heat flow (see Figure 7.5). In this case, the system brings across the
higher-order predicate CAUSE from the water domain to the heat
domain. In essence, it postulates that there may be more structure in
the target than it initially knew about. Thus the resulting candidate
inference in the heat domain is

CAUSE {GREATER [TEMP(coffee), TEMP(ice)],
FLOW(heat, bar, coffee, ice)}.

3. Evaluating global matches. The global matches are then given
a structural evaluation, which can depend on their local match
evidence, the number of candidate inferences they support, and
their graph-theoretic structure ~ for example, the depth of the
relational system.” In this example, the winning Gmap is the pressure—
temperature match discussed above, with its candidate inference of a
causal link in the heat domain. Other Gmaps are also derived, in-
cluding a Gmap that matches diameter with temperature and another
particularly simple Gmap that matches LIQUID (water) with LIQUID
(coffee). But these are given low evaluations. They contain fewer
predicates than the winning Gmap and, at least equally important,
they have shallower relational structures.
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A few points should be noted about the way the structure-mapping
engine works. First, SME's interpretation is based on selecting the §
deepest — that is, most systematic — consistent mappable structure,
Computing a structurally consistent relational matwch precedes ang %
determines the final selection of object correspondences. x

Second, SME’s matching process is entively structural. That is, j '¥
attends only to properties such as identity of predicates, structury) $
consistency (including 11 object pairings), and systematicity, as op- 'g
posed to seeking specific kinds of content. Thus, although it operates ?
on semantic representations, it is not restricted to any particular pre. »
specified content. This allows it to act as a domain-general matcher. Y,
By promoting deep relational chains, the systematicity principle vp-
erates to promote predicates that participate in any mutually con- %
straining system, whether causal, logical, or mathematical. S

Third, as discussed above, different interpretations will be arrived
at depending on which predicates match between two domains. For
example, suppose that we keep the same base domain — the water
system shown in Figure 7.5 — but change the target domain. Instead
of two objects differing in temperature, let the 1arget be two objects ~
differing in their specific heats; say, a metal ball bearing and a marble.
Assuming equal mass, they will also have different heat capacities. Now,
the natural analogy concerns capacity differences in the base, rather
than height differences. This is because the deepest relational chain
that can be mapped to the target is, roughly, “Just as the container
- with greater diameter holds more water (levels being greater than or
equal), so the object with greater heat capacity holds more heat (tem-
peratures being greater than or equal).”

IMPLIES {AND (GREATER [DIAM (beaker), DIAM (vial)],
GREATER [LEVEL (beaker), LEVEL (vial)}),
GREATER [AMT-WATER (beaker), AMT-WATER (vial)]}

where AMT stands for the amount. This maps into the target as

IMPLIES {AND (GREATER [H-CAP (marble), H-CAP (ball)),
GREATER [TEMP (marble), TEMP (bail)}).
GREATER [AMT-HEAT (marble), AM'I-HFEA'T (ball)}}

where H-CAP stands for heat capacity. This illustrates that the same
base domain can yield different analogical mappings. depending on
how it best matches the target.

Fourth, SME is designed as a general-purpose tool kit for similarity
matching. It can operate with analogy rules, mere-appearance rules,
or literal similarity rules, as discussed above.

Fifth, the matching process in SME. is independent of the system's
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roblem-solving goals, although the learner’s goals can influence the
matcher indirectly, by influencing the domain representations present
in working memory. Again, this represents a commitment to gener-
ality. The view is that analogy in problem solving is a special case of
analogy.

An architecture for analogical reasoning

A complete model of analogical problem solving must take account
of the context of reasoning, including the current plans and goals of
the reasoner (Burstein, 1986; Carbonell, 1983; Holyoak, 1985; Kedar-
Cabelli, 1985; Miller, Gallanter, & Pribram, 1960; Schank, 1982;
Schank & Abelson, 1977). Indeed, as | discuss in the next section,
some researchers have argued that plans and goals are so central in
analogical reasoning that the analogy mechanism is built around them.
However, analogies can occur outside of a goal-driven context. Fur-
ther, the very fact that plans and goals influence all kinds of human
thought processes, from transitive inference to the use of deductive
syllogism, shows that they are not in themselves definitive of analogy.
Somehow we need to capture the fact that analogy can be influenced
by the goals of the problem solver while at the same’time capturing
what is specific about analogy. .

I propose the architecture shown in Figure 7.6 for analogical rea-
soning. In this account, plans and goals influence our thinking before
and after the analogy engine but not during its operation. Plans and
goals and other aspects of current context influence the analogy pro-
cess before the match by determining the working-memory represen-
tation of the current situation. This in turn influences what gets
accessed from long-term memory. So, in the heat example, there are
many aspects of the heat domain, but only the aspects currently rep-
resented in working memory are likely to influence remindings. Once
a potential analog is accessed from long-term memory, the analogy
processor runs its course. Here too the initial domain representation
has strong effects, because it defines one input to the processor; thus
it constrains the set of matches that will be found. This leads to “set”
effects in problem solving; it is an advantage if we are thinking about
the problem correctly and a disadvantage if we are not.

The analogy processor produces an interpretation, including can-
didate inferences and a structural evaluation. If the evaluation is 0o
low — that is, if the depth and size of the system of matching predicates
are 100 low — then the analogy will be rejected on structural grounds.
If the analogy passes the structural criterion, then its candidate in-
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* Figure 7.6. An architeciure for analogical processing.

terences must be evaluated to determine whether they are appropriate
with respect to the goals of the reasoner. In terms of the computer
model, this suggests adding a context-sensitive, expectation-driven
module to evaluate the output of SME (Falkenhainer, Forbus, & Gent-
ner, 1986, in press; Falkenhainer, 1987a). This extension is compatible
with the combination models proposed by Burstein (1983) and Kedar-
Cabelli (1985). Thus the key points of this proposed treatment of
plans and goals are that (a) plans and goals constrain the inputs to
the matcher, which is where they have their largest effect; (b) after
the match three separate evaluation criteria must be invoked: struc-
tural soundness, relevance, and validity in the target; and (c) the match
itself does not require a prior goal statement.

In the model proposed here, both structural properties and
contextual-pragmatic considerations enter into analogical problem
solving, but they are not equated. The analogy processor is a well-
defined, separate cognitive module” whose results interact with other
processes, analogous to the way some natural-language models have
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Poslululed semiautonomous interacting subsystems for syntax. se-
mantics, and pragmatics (e.g., Reddy, Erman, Fennell. & Neely, 1973).
This allows us to capture the fact that analogy must satisfy both a
structural and a pragmatic criterion.

Separating the planning context from the actual analogy processor
represents a commitment to identifying processes common to analogy
across different pragmatic contexis. It suggests that when compre-
hending an analogy in isolation, people use many of the same processes
asthey doto comprehend analogy in a problem-solving context. Thatis,
they use the same structurally guided processor for both situations, sim-
plyadding or removing pragmaticcontext."" Anadvantage of modeling
the matching process as structure-driven rather than goal-driven is that
itallows for the possibility of finding unexpected matches, even perhaps
matches that contradict the learner’s initial problem-solving goals. Such
unexpected outcomes are important in scientific discovery. For exam-
ple, the mathematician Poincaré writes about an occasion on which he
set out to prove a certain theorem and ended by discovering a class of
functions that proved the theorem wrong. If we are ever to model such
cases of unexpected creative discovery, the analogy process must be ca-
pable of finding matches that do notdepend on ~and may even contra-
dict —thelearner’s current goals.

Competing views and criticisms of structure-mapping

Some aspects of structure-mapping have received convergent support
in artificial intelligence and psychology. Despite differences in empha-
sis, there is widespread agreement on the basic elements of one-to-one
mapping of objects and carry-over of predicates (Burstein, 1986; Car-
bonell, 1983; Hofstadter, 1984; Indurkhya, 1986; Kedar-Cabelli, 1985;
Miller, 1979; Reed, 1987; Rumelhart & Norman, 1981; Tourangeau &
Sternberg, 1981; Van Lehn & Brown, 1980; Verbrugge & McCarrell,
1977; and Winston, 1980, 1982). Further, all these researchers have
some kind of selection principle - of which systematicity is one example
— to filter which predicates matter in the match. But accounts differ on
the nature of the selection principle. Many researchers use specific con-
tent knowledge or pragmatic information to guide the analogical selec-
tion process, rather than structural principles like systematicity. For
example, Winston's (1980, 1982) system favors causal chains in its
importance-guided matching algorithm. Winston (personal communica-
tion, November 1985) has also investigated goal-driven importance
algorithms. Hofstadter and his colleagues have developed a connec-
tionist like model of analogical mapping, in which systematicity is one of



+. 218  DEDRE GENTNER
" several parallel influences on the mapping process (Hofstadter, 1984;
Hofstadter, Mitchell, & French 1987).

Many accounts emphasize the role of plans and goals as partof the an.
alogical mapping process. For example, some models combine a struc-
ture-mapping component with a plans-and-goals component in order
to choose the most contextually relevant interpretation (e.g., Burstein,
1986; Kedar-Cabelli, 1985). These models use pragmatic context to se-
lect and claborate the relevant predicates and to guide the mapping
process. However, although these models have the ability to take con-
textual relevance into account, they also postulate a set of relatively con-
stant structural processes that characterize analogical mapping. This
view contrasts with a very different position, namely, that analogy
should be seen as fundamentally embedded in a goal-driven problem-
solving system. I now turn to adiscussion of this second position.

The pragmatic account: an allernative lo structure mapping

Holyoak (1985) proposed an alternative, pragmatic, account of analogical
processing. Stating that analogy mustbe modeled as part of agoal-driven
processing system, he argued that the structure-mapping approach is
“doomed to failure” because it fails to take account of goals. In his pro-
posed account, structural principles played no role; matching was gov-
erned entirely by the relevance of the predicates to the current goals of
the problem solver. Because of the appeal of such a goal-centered posi-
tion, I will discuss his arguments in some detail, even though Holyoak
and hiscollaboratorsare now much less pessimistic concerning the utility
of structural principles. I first present Holyoak's pragmatic account of
analogy and then consider hiscritique of structure mapping."'

Holyoak states that “Within the pragmatic framework, the structure
of analogy is closely tied to the mechanisms by which analogies are
actually used by the cognitive system to achieve its goals” (Holyoak,
1985, p. 76). In the pragmatic account, the distinction between struc-
tural commonalties and surface commonalties is based solely on rel-
evance. Holyoak’s (1985, p. 81) definitions of these terms are as
follows:

It is possible, based on the taxonomy of mapping relations discussed earlier,
to draw a distinction between surface and structural similaritics and dissimi-
larities. An identity between two problem situations that plays no causal role
in determining the possible soluttons to one or the other analog constitutes
a surface similarity. Similarly, a structure-preserving difference, as defined
earlier constitutes a surface dissimilarity. In contrast, identities that influence
goal attainment constitute structural similarities, and structure-violating dif-
ferences constitute structural dissimilarities. Note that the distinction between

o peall]
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surface and structural similarities, as used here, hinges on the relevance of
the property in question to attainment of a successful solution. The distinction
thus crucially depends on the goal of the problem solver.

Thus a surface similanity is defined as “an identity between two problem
situations that plays no causal role in determining the possible solu-
tions to one or the other analog,” and structural similarities are “iden-
tities that influence goal attainment.” The distinction between surface
and structural similarities “hinges on the relevance of the property
in question to attainment of a successful solution. The distinction thus
crucially depends on the goal of the problem solver.”

Holyoak's emphasis on plans and goals has some appealing features.
This account promises to replace the abstract formalisms of a struc-
twral approach with an ecologically motivated account centered
around what matters to the individual. Further, whereas structure-
mapping requires both structural factors within the matcher and (in
a complete account) pragmatic factors external to the mawcher, Hol-
yoak’s account requires only pragmatic factors. But there are severe
costs to this simplification. First, since structural matches are defined
only by their relevance to a set of goals, the pragmatic account requires
a context that specifies what is relevant before it can operate. There-
fore, it cannot deal with analogy in isolation, or even with an analogy
whose point is irrelevant to the current context. By this account, Fran-
cis Bacon’s analogy “All rising to a great place is by a winding stair,”
should be uninterpretable in the present context. I leave it to the
reader to judge whether this is true.

Holyoak (1985) seems aware of this limitation and states that his
pragmatic account is meant to apply only to analogy in problem solv-
ing. But this means having to postulate separate analogy processors
for analogy in context and analogy in isolation, which seems in-
convenient at best. But there are further difficulties with the prag-
matic account. Because the interpretation of an analogy is defined in
terms of relevance to the initial goals of the problem solver, the prag-
matic view does not allow for unexpected outcomes in an analogical
match. This means that many creative uses of analogy — such as scien-
tific discovery — are out of bounds. Finally, the pragmatic account
lacks any means of capturing the important psychological distinc-
tion between an analogy that fails because it is irrelevant and an
analogy that fails because it is unsound. In short, a good case can be
made for the need to augment structural considerations with goal-
relevant considerations (though 1 would argue that this should
be done externally to the matcher, as shown in Figure 7.6, for
example). However, the attempt to replace structural factors like
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systematicity with pragmatic factors like goal-relevance does not appear

tenable.

Holyoak raises three chief criticisms of structure-mapping (Hol-
yoak, 1985, pp. 74, 75). First, as discussed above, Holyoak argues tha;
structural factors are epiphenomenal: What really controls analogical
matching is the search for goal-relevant predicates. The higher-order
relations that enter into systematic structures “typically are such pred-
icates as ‘causes,’ ‘implies,” and ‘depends on,’ that is, causal elements
that are pragmatically important to goal attainment. Thus, the prag-
matic approach readily accounts for the phenomena cited as support
for Gentner's theory.” There are two problems with this argument.
First, as discussed above, people are perfectly capable of processing
analogy without any prior goal context, and of interpreting analogies
whose point runs contrary to our expectations. Second, it is not correct
to state that all higher-order relations are “causal elements pragmat-
ically relevant to goal atainment.” For example, implies (used in its
normal logical sense) is not causal. Mathematical analogies, such as
Polya’s (1954) analogy between a triangle in a plane and a tetrahedron
in space, are clear cases of shared relational structure that is not causal,
and that need not be goal-relevant to be appreciated. Hofstadter
(1984) provides many examples of analogies based on purely struc-
tural commonalities: for example, if abc — abd, then pgr — pgs.

Holyoak’s second point is one of definition. In structure-mapping
the distinction between analogy and literal similarity is based on the
kinds of predicates shared: Analogy shares relational structure only,
whereas literal similarity shares relational structure plus object de-
scriptions. Holyoak proposes a different distinction: that analogy is
similarity with reference to a goal. Thus “Even objects that Gentner
would term ‘literally similar’ can be analogically related if a goal is
apparent.” The problem with this distinction is that although it cap-

tures analogy's role as a focusing device, it classifies some things as

analogy that intuitively secem to be literal similarity. For example,
consider the comparison “This ‘82 Buick is like this ‘83 Buick: You
can use it to drive across town.” By Holyoak’s criterion this is an
analogy, because a specific goal is under consideration; yet to my ear
the two Buicks are literally similar whether or not a goal is involved.
But since this is essentially a question of terminology, it may be
undecidable.

Holyoak's third set of criticisms is based on the misinterpretation
discussed earlier: namely, that in structure-mapping the systematicity
of the base domain by itself determines the interpretation of an anal-
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ogy. so that “the mappable propositions can be determined by a syn-
tactic {structural] analysis of the source analog alone.” This is false
except in the rare case where nothing at all is known about the target
(the “pure carry-over” case discussed earlier). This can be seen in the
operation of SME, in which the interpretation arises out of a detailed
match between base and target and not from “a syntactic analysis of
the source analog alone.” (See Skorstad, Falkenhainer, & Gentner,
1987, for examples of how SME yields different interpretations when
the same base domain is paired with different 1argets.) At the risk of
belaboring the point, let us recall that, in structure-mapping, analogy
is seen as a subclass of similarity, and therefore, as with any other
kind of similarity comparison, its interpretation is based on the best
match between base and target. What distinguishes analogy from
other kinds of similarity is that, for analogy, the best match is defined
as the maximally systematic and consistent match of relational
structure.

In summary, Holyoak's pragmatic account must be considered a
failure insofar as it seeks to replace structure with relevance. Though
one may sympathize with the desire to take plans and goals into ac-
count, discounting structure is the wrong way to go about it. None-
theless, this work, like that of Burstein (1986), Carboneli (1981, 1983),
and Kedar-Cabelli (1985), has the merit of calling attention to the
important issue of how plans and goals can be integrated into a theory
of analogy.

Separating structural rules from pragmatics has some significant
advantages: It allows us to capture the commonalities among analogy
interpretation across different pragmatic contexts, including analogy
in isolation; it allows for creativity, since the processor does not have
to know in advance which predicates are going to be shared; and it
allows us to capture the difference between relevance and soundness.
However, if the two-factor scheme I propose in Figure 7.6 is correct,
there is still much work to be done in specifying exactly how plans
and goals affect the initial domain representations that are given to
the analogy processor and how they are compared with the output
of this processor in the postprocessing stage.

Psychological evidence for structure-mapping

Ideal mapping rules. Structure-mapping claims to characterize
the implicit competence rules by which the meaning of an analogy is
derived. The first question to ask is how successfully it does so -
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whether people do indeed follow the rules of structure-mapping in
interpreting analogies. The prediction is that people should include
relations and omit object descriptions in their interpretations of anal-
ogy. To test this, subjects were asked to write out descriptions of
objects and then to interpret analogical comparisons containing these
objects. (Gentner, 1980, 1988; Gentner & Clement, in press). They
also rated how apt (how interesting, clever, or worth reading) the
comparisons were.

The resulis showed that, whereas object descriptions tended 10 in-
clude both relational and object-attribute information, the interpre.
tations of comparisons tended to include relations and omit object
attributes. For example, a subject’s description of “cigarette” was as
follows:

chopped cured tobacco in a paper roll / with or without a filter at the end /
held in the mouth / lit with a match and breathed through to draw smoke
into the lungs / found widely among humans / known by some cultures to he
damaging to the lungs / once considered benefical to health.

Note that this description contains both relational and auributional
information. Yet, when the same subject is given the metaphor “Cig-
arettes are like time bombs,” his interpretation is purely in terms of
common relational information: “They do their damage after some
period of time during which no damage may be evident.” A second
finding was that the comparisons were considered more apt to the

. degree that subjects could find relational interpretations. There was
a strong positive correlation between rated aptness and relationality
but no such correlation for attributionality. Adults thus demonstrate
a strong relational focus in interpreting metaphor. They emphasize
relational commonalties in their interpretations when possible, and
they prefer metaphors that allow such interpretations (Gentner &
Clement, in press).

Development of mapping rules. The implicit focus on relations

in interpreting analogy can seem so natural to us that it seems to go
without saying. One way to see the effects of the competence rules is
to look at cases in which these rules are not followed. Children do
not show the kind of relational focus that adults do in interpreting
analogy and metaphor.'* A 5 year-old, given the figurative comparison
“A cloud is like a sponge,” produces an attributional interpretation,
such as “Both are round and fluffy.” A typical adult response is “Both
can hold water for some time and then later give it back.” Nine-year-
olds are intermediate, giving some relational interpretations but also
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many responses based on common object attributes (Gentner, 1980,
1988; Gentner & Stuart, 1983). The same developmental shift holds
for choice tasks and rating tasks (Billow, 1975; Gentner, 1988). Thus
there is evidence for a developmenial shift from a focus on com-
mon object attributes to a focus on common relations in analogical
processing.

Performance factors in analogical mapping

As Palmer (this volume) points out, structure-mapping aims first and
foremost to capture the essential nature of analogy: what constitutes
an analogy and which distinctions are necessary to characterize anal-
ogy — what Marr (1982) calls the “compuiational level” and Palmer
and Kimchi (1985) call “informational constraints.” Thus structure-
mapping is in part a competence theory in that it attempts to capture
people’s implicit understanding of which commonalities should be-
long to analogy and which should not. The research described above
suggests that under ordinary conditions structure-mapping is also a
good approximation to a performance theory, for people's actual
interpretations of analogies fit the predictions rather well. But what
happens if we make it harder for people to perform according 1o the
rules? Given that the ideal in analogy is to discover the maximal
common higher-order relational structure, here we ask how closely
people approach the ideal under difficult circumstances and what
factors affect people’s performance in carrying out a structure

mapping.

Transfer performance. Gentner and Toupin (1986) posed this
question developmentally. We asked children of 4-6 and 8-10 years
of age to transfer a story plot from one group of characters to another.
Two factors were varied: (a) the systematicity of the base domain (the
original story); and (b) the transparency of the mapping (that is, the
degree to which the target objects resembled their corres-nding base
objects). The systematicity of the original story was varied by adding
beginning and ending sentences that expressed a causal or moral
summary. Otherwise, the stories in the systematic condition were the
same as those in the nonsystematic condition. Transparency was ma-
nipulated by varying the similarity of corresponding characters. For
example, the original story might involve a chipmunk helping his friend
the moose to escape from the villain frog.

After acting out the story with the base characters, the child was
told to act out the story again, but with new characters. In the high-
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Figure 7.7. Results of the cross-mapping experiment: proportion correct on
transfer story given systematic (S) or nonsystematic (NS) original stories,
across mappings varying from high transparency to low transparency (Gent-
ner & Toupin, 1986). High transparency means similar characters in corre-
sponding roles; medium, different characters; and low, similar characters in
different roles (the cross-mapped condition).

transparency mapping, the new characters would resemble the orig-
inal characters: for example, a squirrel, an elk, and a toad, respectively.
In the medium-transparency condition, three new unrelated animals
were used. In the low-transparency (cross-mapped) condition, the char-

. acters were similar to the original characters but occupied noncor-
responding roles: For example, the chipmunk, moose, and frog of the
original story would map onto an elk, a toad, and a squirrel, respectively.
We expected the cross-mapped condition to be very difficult. More
interestingly, we wanted to know how robust the mapping rules are:
How firmly can people hold to a systematic mapping when surface
similarity pushes them toward a nonsystematic solution?

Both systematicity and transparency turned out to be important in
determining transfer accuracy. However the two age groups showed
different patterns, Transparency affected both age groups, whereas
systematicity affected only the older group. For both ages, transfer
accuracy was nearly perfect with highly similar corresponding char-
acters (high transparency), lower when corresponding characters were
quite different (medium transparency), and lower still in the cross-
mapped condition (low transparency). For the older group, system-
aticity also had strong effects. As Figure 7.7 shows, 9-year-olds per-
formed virtually perfectly, even in the most difficult mapping
conditions, when they had a systematic story structure. This is note-
worthy because, as can be seen from their performance in the non-
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systematic condition, 9-year-olds found the cross-mapping condition
quite difficult. Yet, given a systematic relational structure to hold onto,
they could keep their mappings straight. In contrast, the 5-year-olds
were affected only by transparency; they showed no significant benefit
from systematic relational structure.

How does this happen? Gentner and Toupin (1986) speculated that
the benefit comes in part from the way shared systems of relations
help guide the mapping of lower-order relations. An error made in
mapping a particular relation from base to target is more likely to be
detected if there is a higher-order relation that constrains that lower-
order relation. Informal observations in our study support this view.
The older children, in the systematic condition, would sometimes
begin to make an object-similarity-based er-or and then correct them-
selves, saying something like “Oh no, it's the bad one who got stuck
in the hole, because he ate all the food.” They were using the system-
atic causal structure of the story to overcome their local mapping
difficulties.

Research with adults suggests that both systematicity and transpar-
ency continue to be important variables. Both Ross (1984; this volume)
and Reed (1987) have shown that subjects are better at transferring
algebraic solutions when corresponding base and target objects are
similar. Reed (1987) measured the transparency of the mapping be-
tween two analogous algebra problems by asking subjects to identify
pairs of corresponding concepts. He found that transparency was a
good predictor of their ability to notice and apply solutions from one
problem to the other. Ross (1987) has investigated the effects of cross-
mappings in remindings during problem solving. He found that, even
though adults could often access the prior problem, their ability to
transfer the solution correctly was disrupted when cross-mapped cor-
respondences were used. Robert Schumacher and I found benefits of
both systematicity and transpaiency in transfer of device models, us-
ing a design similar to that of Gentner and Toupin (1986), in which
subjects transfer an operating procedure from a base device to a target
device (Gentner & Schumacher, 1986; Schumacher & Gentner, in

ress).

P The evidence is quite strong, then, that transparency makes map-
ping easier. Thus literal similarity is the easiest sort of mapping and
the one where subjects are least likely to make errors. The evidence
also shows that a systematic base model promotes accurate mapping.
This means that systematicity is a performance variable as well as a
competence variable. Not only do people believe in achieving systematic
mappings; they use systematic structure to help them perform the

mapping.
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Developmental implications: the relational shift. Like adults, the 9.
year-olds in the Gentner and Toupin (1986) study were affected by
both systematicity and transparency. But the 5-year-olds showed. no
significant effects of systematic base structure. All that mattered to
this younger group was the transparency of the object correspond-
ences. These results are consistent with the results reported earlier,
and with the general developmental finding that young children rely
on object-level similarities in transfer tasks (DeLoache, in press; Hol-
yoak, Junn, & Billman, 1984; Keil & Batterman 1984; Kemler, 1983;
Shepp, 1978; L. Smith, this volume; Smith & Kemler, 1977) and in
metaphor tasks (Asch & Nerlove, 1960; Billow, 1975; Dent, 1984;
Gardner, Kircher, Winner, & Perkins, 1975; Kogan, 1975). These
findings suggest a developmental shift from reliance on surface sim-
ilarity, and particularly on transparency of object correspondences,
to use of relational structure in analogical mapping.'

Access processes

Now we are ready to tackle the issue of access to analogy and similarity.
Before doing so, let us recapitulate briefly. I proposed at the start of
this chapter a set of subprocesses necessary for spontaneous learning
by analogy: (a) accessing the base system; (b) performing the mapping
between base and target; (c) evaluating the match; (d) storing infer-
ences in the target; and (e) extracting the common principle. So far
we have considered mapping, evaluating, and making inferences. A
major differentiating variable in the research so far is similarity class:
whether the match is one of mere appearance, analogy, or literal
similarity. Now we ask how similarity class affects memorial access to
analogy and similarity.

Accessing analogy and similarity. What governs spontaneous ac-
cess to similar or analogous situations? Gentner & Landers (1985)
investigated this question, using a method designed to resemble nat-
ural long-term memory access. (For details of this and related studies,
+ see Gentner & Landers, 1985; Gentner & Rattermann, in preparation;
Rattermann & Gentner, 1987.) We first gave subjects a large set of
stories to read and remember (18 key stories and 14 fillers). Subjects
returned about a week later and performed two tasks: (a) a reminding
task; and (b) a soundness-rating task.
In the reminding task, subjects read a new set of 18 stories, each
of which matched one of the 18 original stories, as described below.
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Table 7.2. Sample story set for the access experiment (Gentner & Landers,
1985)

BASE story
Karla, an old hawk, lived at the top of a tall oak iree. One afternoon. she saw a

hunter on the ground with a bow and some some crude arrows that had no
feathers. The hunter ook 2im and shot at the hawk but missed. Karla knew the
hunter wanted her feathers so she glided down to the hunter and offered to give
him a few. The hunter was so grateful that he pledged never to shoot at 2 hawk
again. He went off and shot deer instead.

True-analogy TARGET

Once there was a small country called Zerdia that learned to make the world's
smartest computer. One day Zerdia was attacked by its warlike neighbor,
Gagrach. But the missiles were badly aimed and the attack failed. The Zerdian
government realized that Gagrach wanted Zerdian computers so it offered 10 sell
some of its computers to the country. The government of Gagrach was very
pleased. It promised never to auack Zerdia again.

Mere-appearance TARGET

Once there was an cagle named Zerdia who donated a few of her wilfeathers 10 2
sportsman 3o he would promise never to attack eagles. One day Zerdia was
nesting high on a rocky cliff when she saw the sportsman coming with a crossbow.
Zerdia flew down to meet the man, but he attacked and felled her with a single
bolt. As she fluttered to the ground Zerdia realized that the bolt had her own
tailfeathers on it.

False-analogy TARGET

Once there was a small country called Zerdia that learned 10 make the world’s
smartest computer. Zerdia sold one of its supercomputers to its neighbor,
Gagrach, so Gagrach would promise never to attack Zerdia. But one day Zerdia
was overwhelmed by a surprise atiack from Gagrach. As it capitulated the crippled
government of Zerdia realized that the attacker's missiles had been guided by
Zerdian supercomputers.

Subjects were told that if any of the new stories reminded them of
any of the original stories, they were to write out the original story
(or stories) as completely as possible. There were three kinds of sim-
ilarity matches between base and target:

* mere appearance (MA): object auributes and first-order relations

match
* true analogy (TA): first-order relations and higher-order relations

match
* false analogy (FA): only the first-order relations match

In all three cases, the base and target shared first-order relations.
Other commonalties were added to create the different similarity
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conditions. Table 7.2 shows an example set of four stories: a base
story plus one example of each of the three kinds of matches. Each
subject received one-third MA, one-third TA, and one-third FA
matches, counterbalanced across three groups. After the subjects had
completed the reminding task, they performed the soundness-rating
task. They were shown their 18 pairs of stories side by side and asked
to rate each pair for the soundness or inferential power of the match
(with 5 being “sound” and | being “spurious”).

In the soundness-rating task, subjects showed the predicted pref-
erence for true analogies. The mean soundness ratings were 4.4 for
true analogy, 2.8 for mere appearance, and 2.0 for false analogy, with
the only significant difference being between true analogy and the
other two match types. This aspect of the study provides further
evidence for the systematicity principle: Common higher-order re-
lational structure is an important determinant of the subjective good-
ness of an analogy.

The results for access were surprising. Despite subjects’ retrospec-
tive agreement that only the analogical matches were sound, their
natural remindings did not produce analogies. Instead, they were far
more likely to retrieve superficial mere-appearance matches. Given
mere-appearance matches, subjects were able to access the original
story 78% of the time, whereas the true analogies were accessed only
44% of the time, and the false analogies 25% of the time. All three
differences were significant, suggesting that (a) surface commonalities
have the most important role in access but that (b) higher-order re-
lational commonalties — present in the true analogies but not in the
false analogies — also promote access.

We have recently replicated these results, adding a literal similarity
condition, and the results show the same pattern (Gentner & Ratter-
mann, in preparation; Rattermann & Gentner, 1987). In access, sur-
face similarity seems to be the dominant factor. Literal similarity and
mere-appearance matches are more accessible than true analogies and
false analogies. In soundness, systematicity of relational structure is
the dominant factor. True analogy and literal similarity are considered
sound, and false analogies and mere-appearance matches are not.
Interestingly, surface information is superior in access even for sub-
jects who clearly believe that only structural overlap counts toward
soundness. It appears that analogical access and analogical soundness
— or at least our subjective estimates of soundness - are influenced in
different degrees by different kinds of similarity.

These access results accord with the findings of Gick and Holyoak
(1980, 1983) of Reed (1987; Reed, Ernst, & Banerji, 1974), and of
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Ross (1984, 1987; Ross & Sofka, 1986). In this research it has reli-
ably been demonstrated that subjects in a problem-solving task
often fail to access prior material that is analogous to their current
problem. For example, in Gick and Holyoak's (1980, 1983) studies,
a substantial number of subjects failed to access a potential analog
— and therefore could not solve the problem - yet, when the ex-
perimenter suggested that the prior material was relevant, they
could readily apply it to solve the problem. This means that (a)
they had clearly stored the prior analog; (b) the prior analog con-
tained sufficient infermation to solve their current problem; but (c)
they could not access the prior analog solely on the basis of the
current (analogous) problem structure. Thus there is converging
evidence for the gloomy finding that relational commonalities often
fail to lead 10 access.

There is also confirmation for the other side of the coin: that surface
commonalties do promote access (Holyoak & Thagard, this volume;
Novick, 1988; Reed & Ackinclose, 1986; Ross, 1984, 1987, this vol-
ume; Ross & Sofka, 1986; Schumacher, 1987). For example, Ross
(1984) found clear effects of surface similarity in determining which
earlier algebra problems subjects would be reminded of in trying to
solve later problems. Reed and Ackinclose (1986) found that perceived
similarity, rather than structural isomorphism, was the best predictor
of whether subjects solving algebra problems would apply the results
of a previous problem to a current problem."* Overall similarity, es-
pecially surface similarity, appears to be a major factor in accessing
material in long-term memory.

Having said all this, we must remember that purely relational re-
minding does occur. Even young children sometimes experience an-
alogical insights, as attested by Heida's analogy at the beginning of
this chapter. As johnson-Laird (this volume) points out, though re-
mindings between remote domains are relatively rare, their occur-
rence sometimes sparks important creative advances (Falkenhainer,
1987b; Gentner, 1982; Hesse, 1966; Waldrop, 1987). A correct model
of access will have to capture both the fact that relational remindings
are comparatively rare and the fact that they occur.

Decomposing similarity

I began this chapter by noting that similarity is widely considered to
be an important determinant of transfer (Thorndike, 1903; see
Brown, this volume, and Brown & Campione, 1984, for discussions
of this issue). The research reviewed here suggests that both similanty
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and transfer may be t00 coarse as variables. A strong theme in this
chapter, and indeed a convergent theme across this volume, has been
the need to make finer differentiations in the notion of similarity
(Collins & Burstein, this volume; Medin & Ortony, this volume; Rips,
this volume; Ross, this volume; L. Smith, this volume). The research
discussed in this chapter further suggests that transfer must be de-
composed into different subprocesses that interact differently with
different kinds of similarity. Thus the simple statement “Similarity is
important in transfer” may conceal an intricate set of interactions
between different varieties of similarity and different subprocesses in
transfer. .

Based on the research presented so far, it appears that different
subprocesses are affected by different kinds of similarity. Access is
. strongly influenced by surface similarity and only weakly influenced
by structural similarity. Analogical mapping is strongly influenced by
structural similarity, including shared systema.icity; it may also be
weakly influenced by surface similarity. Judging soundness is chiefly
influenced by structural similarity and systematicity. Finally, extracting
and storing the principle underlying an analogy seems likely to be gov-
erned by structural similarity and systematicity. There is thus a re-
lational shift in processing analogy and similarity from surface to
structural commonalities. '

Similarity-based access may be a rather primitive mechanism, a low-
cost low-specificity, high-quantity process, requiring little conscious
effort. Analogical mapping and judging soundness are rather more
sophisticated. They are often somewhat effortful, they often involve
conscious reasoning, and, unlike access, they can be specifically tai-
lored to different kinds of similarity. One can choose whether to carry
out 2 mapping as an analogy or as a mere-appearance match, for
example; but one cannot choose in advance whether to access an anal-
ogy or a mere-appearance match. Access has the feel of a passive
process that simply produces some number of potential matches that
the reasoner can accept or reject. Finally, one suspects that the pro-
cesses of mapping and judging soundness are heavily influenced by
culturally learned strategies (sce Gentner & Jeziorski, in press). In
contrast, access processes seem less amenable to cultural influence and
training."* To the extent that experts differ from novices in their
access patterns, 1 suspect this results chiefly from experts’ having
different domain representations (e.g., possessing relational abstrac-
tions) rather than from their having different access processes.

It is tempting to speculate that similarity-driven access involves
something rather like a ballistic process, whereas mapping and judg-

L |
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ing soundness are more like discretionary processes. in any case, as
we move from access to mapping and judging soundness there is a
sense of increasing volitional control over the processes. To use an
analogy, gaining access to long-term memory is a bit like fishing: The
learner can bait the hook - that is, set up the working memory probe
~ as he or she chooses, but once the line is thrown into the water it
is impossible to predict exactly which fish will bite. '

The access bias for overall-similarity and surface-similarity matches
rather than abstract analogical remindings may seem like a poor de-
sign choice from a machine-learning standpoint. But there may be
good reasons for a bias toward overall similarity. First, a conservative,
overall-similarity bias may be reasonable given the large size of human
data bases relative to current artificial intelligence systems. For large
data bases, the costs of checking all potential relational matches may
well be prohibitive. Second, a conservative matching strategy might
be prudent for mobile biological beings, for whom a false positive
might be perilous. Third, by beginning with overall similarity the
learner allows the relational vocabulary to grow to fit the data. This
may be one reason children are better language learners than are
adults; paradoxically, their initial conservatism and surface focus may
allow the correct relational generalizations slowly to emerge (cf. New-
port, 1984; see Forbus & Gentner, 1983; Murphy & Medin, 1985).

These arguments suggest that human access is geared toward literal
similarity. But what about the fact that our access mechanisms also
retrieve mere-appearance matches? Possibly, this comes about as a by-
product of the overall-similarity bias. By this account, it is a design
flaw, but perhaps a fairly minor one for concrete physical domains,
where appearances tend not to be very deceiving. Very often, things
that look alike are alike. (See Gentner, 1987; Medin & Ortony, this
volume; Wattenmaker, Nakamura, & Medin, 1986.) Where surface
matches become least reliable is in abstract domains suck as algebra
or Newtonian mechanics. The novice who assumes that any new
pulley problem should be solved like the last pulley problem will
often be wrong (Chi, Feltovich, & Glaser, 1981). Thus our surface-
oriented accessor can be an obstacle to learning in abstract domains,
where the correlation between surface features and structural fea-
tures is low.

Implications for learning

Now let's put together these findings and ask how they bear on ex-
periential learning. This discussion is based on that given by Forbus
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and Gentner (1983). Forbus and Gentner examined the role of sim-
ilarity comparisons in the progression from early to later represen-
tations. A key assumption here is that implicit comparisons among
related knowledge structures are important in learning (Brooks, 1978;
Jacoby & Brooks, 1984; Medin & Schaffer, 1978; Wattenmaker et al.,
1986). We conjecture that much of experiential learning proceeds
through spontaneous comparisons — which may be implicit or explicit
— between a current situation and prior similar or analogous situations
that the learner has stored in memory. We also assume that early
representations are characteristically rich and perceptually based.
That is, early domain representations differ from more advanced
representations of the same domain in containing more perceptual
information specific to the initial context of use. What does this pre-
dict? First, in terms of access, the greater the surface match the greater
the likelihood of access. Thus the matches that are likely to occur
most readily are literal similarity matches and mere-appearance
matches.

Once the base domain has been accessed, the mapping process
occurs. To transfer knowledge from one domain to another, a person
must not only access the base domain but also set up the correct object
correspondences between the base and target and map predicates
across. At this level, a mix of deep and surface factors seems to operate.
Systematicity and structural similarity become crucial, but so does the
transparency of the object correspondences (Gentner & Toupin,
1986; Reed, 1987; Ross, 1987). It appears that, for adults and/or
experts, systematicity can to some extent compensate for lack of trans-
parency. The rules of analogy are clear enough and the relational
structures robust enough to allow accurate mapping without surface
support. But for children and novices surface similarity is a key de-
terminant of success in analogical mapping.

To the extent that children and novices rely on object commonalities
in similarity-based mapping, they are limited to literal similarity
matches and mere-appearance matches. The disadvantage of mere-
appearance matches is obvious: They are likely to lead to wrong in-
ferences about the target. But even literal similarity matches have
their limitations. Although adequate for prediction, literal similarity
matches are probably less useful than analogies for purposes of ex-
plicitly extracting causal principles. In an analogical match, the shared
data structure is sparse enough to permit the learner to isolate the
key principles. In literal similarity, there are t0o many common pred-
icates to know which are crucial (Forbus & Gentner, 1983; Ross, this
volume; Wattenmaker et al., 1986).
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How do learners escape the confines of literal similarity? One way,
of course, is through explicit instruction about the relevant abstrac-
tions. But there may be ways within experiential learning as well. If
we speculate that the results of a similarity comparison become slightly
more accessible (Elio & Anderson, 1981, 1984; Gick & Holyoak, 1983;
Ortony, 1979; Skorstad, Gentner, & Medin, 1988), then repeated
instances of near-literal similarity could gradually increase the salience
of the relational commonalities. At some point the relational structures
become sufficiently salient to allow analogy to occur. Once this hap-
pens, there is some likelihood of noticing the relational commonalities
and extracting them for future use. (This conjectural sequence, which
is essentially that proposed in Forbus and G ntner, 1983, hinges on
the claim that the results of an analogy are sparser and therefore
more inspectable than the results of a literal similarity comparison.
Hence, the probability of noticing and extracting the common re-
lational structure is greater.) The extracted relational abstractions
can then influence encoding. With sufficient domain knowledge,
the set of known abstractions — such as flow rate or positive feedback
situation — becomes firm enough to allow relational encoding and
retrieval.

The post-access processes can be influenced both by individual
training and by local strategies. I suspect that this is the area in which
training in thinking skills can be of most benefit. For example, people
may learn better skills for checking potential matches and rejecting
bad matches, and perhaps also skills for tinkering with potential
matches to make them more useful (Clement, 1983, 1986). However,
I suspect that some parts of the system will always remain outside
direct volitional control. To return to the fishing analogy, we can learn
to bait the hook better, and once the fish bites we can learn better
skills for landing it, identifying it, and deciding whether to keep it or
throw it back. But no matter how accurate the preaccess and post-
access processes, there is always uncertainty in the access itself. When
we throw the hook into the current we cannot determine exactly which
fish will bite. A strategically managed interplay between discretionary
and automatic processes may be the most productive technique for
analogical reasoning.

Conclusion

In this chapter I have suggested that different kinds of similarity
participate differently in transfer. In particular, I have proposed de-
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composing similarity into subclasses of analogy, mere-appearance, and
literal similanty and transfer into subprocesses of access, mapping, stonng
inferences, and extracting commonalities. Although many issues remain
to be worked out, it seems clear that this finer-grained set of distinc-
tions will allow a more fruitful discussion of similarity based learning.

NOTES

This research was supported by the Office of Naval Research under Contract
N00014-5-K—-0559, NR667-551. The developmental studies were supported
by the National Institute of Education under Contract 400—-80-0031 awarded
to the Center for the Study of Reading. I thank Ann Brown, Allan Collins,
Judy DeLoache, Ken Forbus, Doug Medin, and Brian Ross for many insightful
discussions of these issues, and Cathy Clement, Rogers Hall, Mike Jeziorski,
Doug Medin, Andrew Ortony, Mary Jo Rattermann, Bob Schumacher, and
Janice Skorsiad for their helpful comments on a draft of this paper.

1 For now, | will use the term analogical leaming to refer to both learning
by analogy and learning by literal similarity. Later in the chapter | will
distinguish between analogy and similarity.

2 This account has benefited from the comments and suggestions of my
colleagues since my first proposal in 1980. Here and there | will indicate
some ways in which the theory has changed.

3 The notation in Figure 7.2 is equivalent to a predicate calculus represen-
tation; I use it because it emphasizes structural relationships (see Norman

. & Rumelhar, 1975; Palmer, 1978).

4 In this analogy, the function PRESSURE in the water domain must be
mapped onto TEMPERATURE in the heat domain. Like objects, func-
tions on objects in the base can be put in correspondence with differem
functions in the target in order to permit mapping a largers systematic
chain.

5 An ongoing question in our research is whether mere-appearance matches
should be viewed as including first-order relations as well as object
attributes. .

6 The reason that attributes are ignored, rather than being placed in cor-
respondence with other attributes, is to permit analogical matches between
rich objects and sparse objects.

7 Adding functions to the representation is a change from my former po-
sition, which distinguis only between object attributes (one-place
predicates) and relations (two-or-more-place predicates). 1 thank Ken
Forbus, Brian Falkenhainer, and Janice Skorstad for discussions on this
issue.

8 Currently, the giobal evaluation is extremely simple: The match-hypoth-
esis evidence scores are simply summed for each Gmap. Although we
have developed more elaborate schemes for computing the goodness of
the Gmaps, this simple summation has proved extremely effective. We
have tried SME on over 40 analogies, and in every case its highest-ranked
Gmap is the one humans prefer.

The mechanisms of analogical learning 235

9 The term module here should not be taken in the Fodurian sense. 1 assume
that analogical processing is not innate or hard-wired but, at least in part,
learned; nor do | assume that the analogy processor is impenetrable,
although its workings may be opaque.

10 As in all top-down expectation situations, comprehension should be
easier with a supporting context and harder when context leads to the
wrong expectations; but the basic analogy processes do not require a
context.

11 It should be noted that since this chapter was written Holyoak has revised
his position. His recent work incorporates many of the structural con-
straints discussed here while still postulating a central role for contextual
goals (Thagard & Holyoak, 1988).

12 Much of the developmental literature has been couched in terms of met-
aphor rather than analogy. Often, the items called metaphars are figurative
comparisons that adults would treat as analogies.

13 It is not clear whether this shift is due to a developmental change in
analytical reasoning skills or simply to an increase in domain knowledge,
especially relational knowledge (Brown, this volume; Brown & Campione,
1984; Carey, 1984; Chi, 1978; Crisafi & Brown, 1986; Gentner, 1977ab,
1988; Larkin, McDermott, Simon, & Simon, 1980, Reynolds & Ortony,
1980; Siegler, 1988; Vosniadou & Ortony, 1986).

14 These results, especially in problem-solving contexts, are problematic for
the plan-based indexing view held by many researchers in artificial in-
telligence. See Gentner (1987) for a discussion. .

15 This echoes the relational shift in the development of analogy from an
early focus on surface commonalities to the adult focus on relational
commonalities. How much we should make anything of this parallel is
unclear.

16 We may perhaps learn to guide access by the indirect route of changing
the contents of working memory so that a different set of maiches arises.
However, this is not a very fine-tuned method. | thank Brian Ross for
discussions of this issue.
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