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ABSTRACT 

In recent papers, Lee & Holyoak (2007, 2008a, 2008b) 

argue that extant models of analogy fail to explain how 

people draw inferences from causal analogies. In the 

current research, we argue that structure-mapping theory 

sufficiently explains the analogical inferences drawn 

from these causal analogies, and that, contrary to L&H‘s 

claims, the effect inference can indeed be evaluated by a 

post-analogical causal reasoning process. In Study 1, we 

present evidence that – consistent with SMT (Gentner, 

1983), and counter to L&H – when relational inferences 

are considered, the inductive strength of these causal 

analogies matches their similarity. In Study 2, we 

provide evidence that, by analogical mapping, the base 

analog makes two contributions to the reasoner‘s 

knowledge about the causal system in the target, and 

argue that this analogically-constructed causal model is 

subsequently used to determine the presence of the 

effect. In an SME (Falkenhainer et al., 1989) simulation, 

we show that ―outsourcing‖ the effect inference to a 

simple post-analogical calculation can match L&H‘s 

human data very closely. In short, although we agree 

with Lee & Holyoak that analogy is important for 

learning about causal systems, we maintain that analogy 

is a domain-general process. Models of analogical 

processing need not—and should not—subsume causal 

inferencing processes. 

INTRODUCTION 

We live in an uncertain world; daily we are 

confronted with situations in which we must reason 

about the unknown. Often we refer to similarity in 

service of this goal: What is that creature crossing my 

path? If it walks like a duck and quacks like a duck, 

we say, it probably is a duck. Drawing analogies 

between situations help us to better understand novel 

situations and to make predictions about them. To 

make inferences, we also use causal relations: when 

it‘s raining, we can infer that the pavement must be 

wet and slippery. These kinds of inductive reasoning 

give us the capacity to better understand and navigate 

uncertain situations. 

Analogical reasoning confers the ability to 

determine similarity and to make inferences from one 

situation to another. Causal reasoning provides the 

ability to make inferences (predictions and 

diagnoses) about a given causal system or situation 

based on the particular generative and preventative 

causal relations at work in that system. They are alike 

in being informative; they are different in that 

analogy inherently applies to two systems and causal 

reasoning, to one system.   

Furthermore, analogies often involve causal 

systems. Higher-order relations that govern analogy – 

those relations bind one relation to another 

(“skidding on the ice caused the car to spin off the 

road”), and thus give depth to a relational structure – 

are frequently causal relations. By analogy, we might 

think: if that car skidded on the ice, then perhaps 

another moving vehicle – a truck or a skateboard – 

could also skid on another slippery surface, such as 

wet leaves.  

The purpose of this paper is to investigate the 

inferences made from causal analogies, and the 

processes which produce them. Our main goal is to 

examine the reasoning processes that produce the 

inferences drawn from causal analogies.  

Analogical Inference 

Analogical reasoning provides the ability to 

determine similarity and to make inferences from one 

situation to another. According to Gentner's (1983, 

1989; Gentner & Markman, 1997) structure-mapping 

theory (SMT), analogical mapping is the process of 

establishing a structural alignment between two 

situations and then projecting inferences. The theory 

assumes structured representations in which the 

elements are connected by relations, and higher-order 

relations (such as causal relations) connect first-order 

statements (see Falkenhainer, Forbus, & Gentner, 

1989; Markman, 1999). During the alignment 

process, possible matches are first found between 

individual elements of the two represented situations; 

these matches are then combined into structurally 

consistent clusters, and finally into an overall 

mapping. The resulting alignment consists of an set 

of correspondences between the elements and 

relations of the two situations, with an emphasis on 

matching systems of interconnected relational 

predicates (the systematicity principle).  As a natural 

outcome of the alignment process, candidate 

inferences are projected from the base to the target. 

These inferences are propositions connected to the 

common system in one analog, but not yet present in 

the other. Thus, structural completion can lead to 

spontaneous unplanned inferences.  

In general, models of analogy, including 

structure-mapping theory, (Gentner, 1983, e.g.) 

postulate that the more similar two analogs are, the 

greater their inductive strength. Lassaline (1996) 

explored causal analogies, and in particular the 

strength of inferences that result from various kinds 

of commonalities. In one study (Exp.2), she provided 

evidence that a greater number of binding, non-

shared causal relations (those causal relations which 

are present in the base analog, and which are bound 

to, or take as an argument, an attribute shared by both 

analogs) leads to greater inductive strength. That is, 
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when a causal relation is present in the base, and its 

causal antecedent is shared  by both analogs, people 

judge the relation‘s effect to be more likely.  

Effect Inferences and Similarity 

Intuitively it seems clear that a generative causal 

relation should increase the likelihood of the effect in 

the target. In recent research, Lee & Holyoak (2007, 

2008a, 2008b) capitalize on the converse idea, that 

preventative causal relations should decrease the 

strength of an effect inference.  In one study, they 

gave participants pairs of animals and asked for 

similarity judgments or inference ratings. The base 

animal consisted of three causal properties, one effect 

property, and three relations. Two of the causal 

properties are generative: each "tends to cause" the 

effect property. The third causal property is 

preventative, and "tends to prevent" the effect 

property. (See Figure 1.) Using these analog pairs, 

L&H show that when a preventative property in the 

base is also present the target analog, the ratings of 

the effect inference in the target decrease (vs. when 

the preventative property is not present in the base), 

but similarity between base and target increases. 

They thus show a dissociation between similarity and 

the effect inference. We will address this finding in 

Study 1.  

 
Figure 1: Causal structure of base and target items 
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However, Lee & Holyoak make two apparently 

conflicting claims about how causal models and 

analogical inference interact. The first claim is that 

"analogical inference involves using the source 

analog to guide construction of a causal model of the 

target analog‖ (2008b, p1119), i.e., that "some form 

of analogical transfer can guide construction of a 

causal model appropriate for the target domain" 

(2008b, p1121). The competing claim is that "causal 

models guide analogical inference" (2008b, p1116). 

The former claim suggests that analogical inference 

plays the guiding role (by constructing the causal 

model); the latter claim implies that causal models 

have the guiding role (in analogical inference); 

We agree with the first  claim: specifically, we 

agree that analogical mapping (alignment and 

inference projection), guides the construction of a 

causal model in the target analog. With respect to 

L&H's first claim, we would not agree that causal 

models guide analogical inference.  Rather, (1) as just 

noted, the causal model of the base domain is 

imported into the target via analogical inference; and 

(2) once the new inferences have been assimilated 

into the target, new causal inferences may be 

generated in the target domain. The causal model is 

also used to evaluate the analogical inferences after 

the mapping is completed. We will address these 

claims in Studies 2 and 3.  

Lee & Holyoak conclude that because causal 

models guide analogical inference, the basic elements 

of causal models must be incorporated into models of 

analogy. We disagree, and provide experimental 

results in support of the integrity of the analogical 

process. We also provide a computational simulation 

(Study 3) using SME to demonstrate that the 

inference evaluation can indeed be outsourced to a 

post-analogical process.  

Overview of Current Research.  

Study 1A replicates Lee & Holyoak‘s (2008b) 

Experiment 1. Study 1B further examines the 

relationship between similarity, the effect inference, 

and the overall inductive strength of the analogy.  

Study 2 examines the contributions of analogical 

reasoning to the causal inference.  Study 3 is a 

computational simulation to model the human data of 

Study 1. This simulation uses SME followed by a 

simple causal calculation operating on SME‘s output, 

as proof of concept that the causal inference 

evaluation can be ―outsourced‖ to a postanalogical 

process. 

STUDY 1A: Replication 

As a check for consistency with our subsequent 

research, this study seeks to replicate Lee & 

Holyoak‘s (2008b) Experiment 1.  

Method 

Participants.  Seventy Northwestern undergraduates 

participated to fulfill a course requirement. Half 

(n=36) were randomly assigned to the Similarity 

condition, and half (n=34) to the Inference condition.   

Materials and procedure. Each participant received a 

set of nine descriptions of animal pairs (plus 3 filler 

items). Each of the nine test pairs included a base 

animal that was described as having four properties: 

one effect property (E); two generative properties 

(G1, G2) each of which "tends to cause" the effect 

property; and one preventative property (P) which 

"tends to prevent" the effect property. (See Figure 1.) 

These base animals thus followed the same structure 

as Lee & Holyoak‘s (2008b, Exp.1) stimuli. The 

target animal in the pair had either two generative 

features and one preventative feature (GGP), one 

generative feature and one preventative feature (GP), 

or two generative features (GG). (See Appendix A 

for sample stimuli.)  

In total, 27 pairs were created using nine base 

animals and three target animals for each base. Each 

participant was randomly assigned three pairs of each 

target-type (3-GGP, 3-GP, 3-GG), with each of the 

nine base animals appearing exactly once. Pairs were 

arranged in three blocks; each block contained three 
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pairs (1-GGP, 1-GP, 1-GG), randomly ordered within 

the block. One filler item appeared after each block.  

Participants in the Similarity condition were 

asked to rate the similarity of the animals in each 

pair; participants in the Inference condition were 

asked to provide an inference rating. Materials were 

presented and responses were collected using 

MediaLab on PC; instructions and experimental trials 

were self-paced. 

Results  

The results for both similarity ratings and inference 

ratings are shown in Figure 2. Similarity ratings and 

inference ratings were analyzed separately using one-

way ANOVA repeated-measures design.  

For the Similarity group, mean ratings differed 

significantly by target type, F(2,286)=44.4, p<.0001. 

Tukey‘s HSD contrasts (q=2.36) showed that the 

GGP targets (M=7.53, SD=1.72) were rated more 

similar to the base than were the GG (M=6.35, 

SD=1.99) or GP (M=5.01, SD=1.34) targets, and the 

GG targets were rated more similar to the base than 

the GP targets.  

 
Figure 2: Mean Similarity and Effect inference ratings, 

by target type 
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In the Effect Inference group, the effect 

inference ratings also differed significantly by target 

type, F(2,270)=164.6, p<.0001. Tukey‘s HSD 

contrasts (q=2.35) showed that the effect inference 

ratings for the GG targets (M=89.4, SD=11.7) were 

significantly higher than for the GGP  (M=74.4, 

SD=15.3) or GP (M=46.1, SD=13.0) targets, and the 

ratings for the GGP targets were significantly higher 

than for the GP targets. 

The pattern of similarity ratings (GGP > GG > 

GP) does not match the pattern of ratings for the 

Effect inference (GG > GGP > GP). Although the 

GGP Target was rated most similar to the base, the 

Effect Inference Rating was highest for the GG 

Target. This pattern replicates Lee & Holyoak‘s 

Experiment 1 (2008b). 

Discussion 

These results show that when a shared feature was 

eliminated
1
 -- when two features (GG) where shared, 

rather than three (GGP) -- similarity decreased, but 

the effect inference increased. This replicates Lee & 

Holyoak‘s finding.  

At first glance, this pattern seems to pose a  

major challenge to theories of analogy, as Lee & 

Holyoak (2007, 2008a, 2008b) point out. Most 

models, include SMT, predict that the inferential 

strength of an analogy should correlate with the 

similarity of the analog pairs. These results seem to 

suggest a dissociation between inferential strength 

and similarity.  

However, the only inference tested in these 

experiments (our Study 1, Lee & Holyoak‘s studies, 

Lassaline‘s study) is the effect inference. Although 

Lee & Holyoak claim that ―the ultimate goal of 

analogical inference is to predict the presence or 

absence of some outcome in the target‖ (2008b, p 

1112), we argue that there are multiple goals of 

analogical inference – not the least of which is 

understanding. Each inference projected from base to 

target represents new information that may be true of 

the target. Such inferences include not only the 

inferred presence of some specific outcome, but also 

the inferred presence of whole chunks of relational 

structure. These inferences yield a better 

understanding of the target system, they help us 

explain why certain conditions occur or exist in the 

target, and they provide a basis for extrapolating new 

information – i.e., learning about the target.  

Furthermore, according to Structure-mapping 

Theory, it is relational similarity – shared structure, 

consisting of interconnected relations – that provides 

support for candidate inferences, by structural 

completion (Clement & Gentner, 1991; Markman & 

Gentner, 2000; Gentner & Kurtz, 2006; see also Blok 

& Gentner, 2000, for a further discussion of 

inferences and the goodness of the common schema). 

In L&H‘s stimuli, there is very little shared structure; 

nothing is known about the similarity of Animals A 

                                                           
1 Lee & Holyoak state that their experiments 1 & 2 

―reduced structural overlap by eliminating a shared 

relation‖ (2008b, abstract). Strictly speaking this is 

inaccurate: none of the stated relations are explicitly shared 

by the base and target. Rather, they reduced similarity by 

eliminating a shared feature which was connected to a non-

shared, binding relation. In our assessment, this 

manipulation effectively reduced the support for that 

relational candidate inference.  
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and B, apart from a few shared features. The specific 

relations in question are stated as present in the base 

only; they are not shared by the target. Thus, the 

similarity between the two animals is almost entirely 

feature-based. Any causal relations in the target must 

be projected from the base as candidate inferences.  

For these reasons, we argue that the inductive 

strength of an analogy should be measured by all its 

candidate inferences, and not solely a single effect 

inference. Despite the limited structural overlap, we 

predict that when all the inferences are considered, 

the inductive strength of these analogies should 

reflect the pattern of similarity ratings.  

To test this claim, we gave participants the 

same animal pairs as in Study 1A, but gave them a 

list of 4-5 possible inferences, and asked them to 

endorse those inferences that are ―probably true‖ of 

the target animal. Our prediction is that when these 

endorsements are taken together, the resulting overall 

inductive strength of the analogies will parallel the 

pattern of similarity ratings.   

STUDY 1B: Relational Inferences 

Method 

Participants. Twenty-two Northwestern undergrads 

participated to fulfill a course requirement. Three 

additional participants were excluded for failing the 

catch trials.  

Materials and procedure. As in Study 1A, each 

participant received a set of nine descriptions of 

animal pairs (plus 3 filler items). The same 27 animal 

pairs were used, and as in Study 1A, each participant 

was randomly assigned three pairs of each target-type 

(3-GGP, 3-GP, 3-GG), with each of the nine base 

animals appearing exactly once. Pairs were arranged 

in three blocks; each block contained three pairs (1-

GGP, 1-GP, 1-GG), randomly ordered within the 

block. One filler catch trial appeared after each block.  

For each animal pair, participants were asked to 

select, from a list of possible inferences warranted by 

the analogy, the inferences that were ―probably true‖ 

of the target animal. (See Appendix A for sample 

stimuli.) For the GGP trials, the list included three 

relational inferences and the single effect inference. 

For the GG and GP trials, the list included three 

relational inferences, the effect inference, and one 

antecedent inference (e.g., for the GG trials, the ―P‖ 

antecedent was included in the inference list). Thus, 

each participant responded to four inferences for each 

of three GGP trials, five inferences for each of three 

GG trials and three GP trials. The study was self-

paced and administered using MediaLab on PC. 

Results 

Table 1 shows the mean proportions of inferences 

endorsed, by target type. Results were analyzed using 

a one-way repeated-measures ANOVA. 

 

Table 1: Mean proportion of inferences endorsed, for 

each inference and target type2 

  GGP GG GP 

  Mean (SD) Mean (SD) Mean (SD) 

Antecedent n/a 0.0   (0.0) .045 (.156) 

G1-relation .879 (.318) .848 (.32.1) .788 (.334) 

G2-relation .894 (.280) .848 (.32.1) .197 (.351) 

P-relation .818 (.367) .121 (.28.3) .818 (.321) 

Effect .652 (.430) .864 (.28.5) .182 (.321) 

Overall Avg .811 (.259) 53.6 (17.6) 40.6 (19.2) 

 

The mean proportion of endorsements for all 

inferences within each target type are shown in  

Figure 3a. As predicted, this measure of 

inductive strength replicates the pattern of Similarity 

ratings in Study 1A. The mean proportion of 

inferences endorsed differed significantly by target 

type, F(2,174)=142.3, p<.0001. Tukey‘s HSD 

contrasts (q=2.36) showed that this measure was 

significantly higher for the GGP targets than for the 

GG targets, and significantly higher for the GG 

targets than for the GP targets. 

 
Figure 3a: Mean proportion of all inferences endorsed, 

by target type 

Mean of all inferences: Overall inductive strength 
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As a consistency check, the mean Effect 

inferences (shown in Figure 3b) follow the same 

pattern as in Study 1A.
3
 The proportion of effect 

inferences endorsed differed significantly by target 

type, F(2,174)=142.3, p<.0001. Tukey‘s HSD 

contrasts (q=2.35) showed that the effect inference 

endorsements  were significantly more likely for the 

                                                           
2 For each target type, the participant had 3 

opportunities – in 3 trials – to endorse each type of 

inference. This table shows the mean proportion of 

endorsements for each inference type. For example, for the 

GGP target-type, participants, on average, endorsed 

approximately 2/3 (0.65) of the Effect Inferences.  
3 The Effect inference for the GP target in Study 1B 

looks lower than in Study 1A; our explanation for this is 

that because this task asked for categorical endorsements 

rather than ratings, the participants whose ratings would 

have been below 50%  (as most of them were in Study 1A) 

did not endorse the inference. 
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GG targets than for the GGP or GP targets, and 

significantly more likely for the GGP targets than for 

the GP targets. 

 
Figure 3b: Mean proportion of inferences endorsed, for 

Effect inference, by target type 
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Discussion 

This pattern of overall inductive strength 

parallels the similarity pattern found in Study 1A. 

Consistent with structure mapping theory, adding a 

shared element increased inductive strength, just as it 

increased similarity.  

The inferential strength for the effect inference 

decreased, as it did in Study 1A. However, assuming 

that there are multiple goals of analogical inference, 

there seems no reason to imagine that any one of the 

individual candidate inferences is a more important 

measure of inductive strength than the others. Thus, 

we argue, the mean of all the potential inferences 

warranted by the analogy is a truer measure of an 

analogy’s inductive strength. The results of this 

overall measure of inductive strength, taken together 

with the Similarity results in Study 1A, suggest that 

inductive strength does not dissociate from similarity.  

However, the question remains: if the effect 

inferences are not fully explained by models of 

analogy, then how are these causal inferences 

processed?  

According to SMT (Gentner 1983, 1989; 

Gentner & Markman, 1997), the relations in the base 

are projected to the target as candidate inferences 

during the mapping process. Lee & Holyoak‘s 

suggestion that analogical inference is used to 

construct the causal model in the target (see also 

Gentner,  2001), is consistent with SMT on this point.  

In the analogies in these studies, the inferred relations 

are causal, and form the causal model in the target 

analog. In other words, the relational inferences that 

participants made in Study 1B constitute the causal 

model in the target.
4
 

                                                           
4 In these studies, the stimuli are very sparse, and the 

target analogs contain no stated relations. The entire causal 

structure is therefore projected from the base. In general, 

according to SMT, the relational inferences are a 

completion of the shared structure, in addition to any other 

structure (relations) already present in the target. Thus, if 

We further extend L&H‘s claim: we argue that 

by analogical reasoning, the base analog in these 

studies makes two contributions to knowledge about 

the causal system in the target.  

The first contribution, as Lee & Holyoak 

suggest, is the structure of the causal model. The 

second contribution the base may make to 

information about the causal system in the target is 

essentially a proxy for the posterior probability that E 

will occur when G1, G2, and P are present [or, 

p(E|G1, G2, P)]. In models of causal reasoning, prior 

probabilities (base rates, such as p(G1) – the 

probability that G1 will occur) and posterior 

probabilities (such as p(E|G1)) are typically used to 

calculate the probability of an outcome under various 

conditions. (Pearl, 2000; Griffiths & Tenenbaum, 

2005; see Glymour, 2001 for a discussion of the 

probability assumptions of several models of causal 

inference).  

In Study 2, we examine these contributions. If 

the causal model in the target is constructed by 

analogical mapping, then the causal model 

constructed in the target should be effectively the 

same as if the relations were given in the target in the 

first place. If that model is then used to determine 

whether the effect is present in the target, then 

people‘s effect inference ratings should not differ 

based on whether the relations are given in the base 

or target. For example, given an analogy where the 

base contains two features (e.g., G and P), and the 

target includes the same two features, the effect 

inference ratings when the relations are given in the 

base should not differ from effect inference ratings 

when the relations are given in the target. These 

should also not differ from a no-analog causal 

inference task, where the effect inference is made 

about one animal which has the two features and the 

two relations (and no base is given).   

However, if the base contributes information 

about the effect‘s prior probabilities, then knowing 

that the effect is present in the base should lead to 

higher effect inference ratings than when the effect‘s 

status is not known.   

STUDY 2: Contributions of Base  

to Target’s Causal System 

To examine the contributions that the base 

analog makes to the causal system in the target, we 

vary the information given in the base. Specifically, 

we vary whether a base analog is given, whether the 

stated causal relations are in the base or target, and 

whether the relations given in the base are explicitly 

accompanied by the effect, and ask participants for 

effect inferences for each of the targets.  

                                                                                       
the target were to contain its own causal relations, then any 

relations inferred from the base would be incorporated into 

the target‘s existing causal structure. (As a related side 

note, candidate inferences in general could be projected in 

either direction; not only from base to target, but also from 

target to base (e.g., Bowdle & Gentner, 1997)) 
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Our first claim is that the base analog 

contributes the relations to the target by analogical 

mapping. Our corresponding prediction is that effect 

inferences should not differ based on whether the 

causal relations are given in the base or in the target 

analog. Furthermore, these inference ratings should 

also not differ from those when only one animal (the 

target, and no base) is given.  

 To test this, we created three sets of stimuli. 

what differs among these sets is the location of the 

G1 and P1 relations. In the Analogy-BaseRelations 

condition, the GP relations are given in the base. In 

Analogy-TargetRelations conditions, the relations are 

given in the target animal. In the No-Analogy 

condition, there is only a single animal (no base) 

which contains all the relations. (These variations are 

shown in  

Table 2.) If the base analog contributes the 

relations to the target by analogical mapping, then the 

causal model constructed for each target should be 

the same for these three groups, and so, for each 

target, the effect inference ratings should not differ 

between these groups.  

Our second claim is that when the effect is 

explicitly present in the base analog, the base 

contributes information about the combined strength 

of the stated relations (G,P) in producing the effect. 

This is essentially the posterior probability, p(E|GP). 

Our corresponding second prediction is that when the 

effect inference is included in the base, the effect 

inference ratings for the GP and GPP target-types 

should be higher than when the effect is not stated to 

be present (Analogy-BaseRelations, Analogy-

TargetRelations, and NoAnalogy conditions). To test 

this, we created a fourth set of stimuli (Analogy- 

BaseRelations+E condition) in which the GP 

relations are given in the base – as in the Analogy- 

BaseRelations condition – and added an explicit 

statement that the effect is present in the base analog. 

(See Appendix A for sample stimuli.) 

Thus we predict that, for the GP target e.g., the 

Analogy-BaseRelations+E group should give higher

 
 

Table 2: Stimuli variations for Study 2 
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 E inference ratings than the Analogy-BaseRelations 

group.
5
 

Method 

Participants. Thirty-two undergraduates participated 

to fulfill a course requirement or for nominal 

compensation. Participants were randomly assigned 

to one of four conditions (see Table 2). Four 

additional participants were excluded for failing the 

catch trials.  

Materials and procedure. Each participant 

received a set of three descriptions of animals (plus 

filler items). The animals were adapted from  the 

ones used in Study 1. The Analogy-TargetRelations 

(n=9),  

Analogy-BaseRelations (n=11), and Analogy-

BaseRelations+E (n=11) groups received three 

descriptions of animal pairs (base and target); the No-

Analogy group (n=11) received three descriptions of 

single animals (the target). We created four sets of 

stimuli. These variations are shown in  

Table 2.  

In the first trial, all groups received the GP 

target; in the second trial, the GGP target; and in the 

third trial, the GPP target. In each trial, participants 

were asked to judge the presence of the effect in a 

target animal (E.g., “ How likely is it that animal S 

has scaly skin? (on a scale of 0-100)”). For each 

target-type, the base and target descriptions varied by 

group, as shown in Table 2The experiment was self-

paced and was administered using MediaLab on PC.  

Results and Discussion 

Table 3 shows the mean effect inference ratings for 

each group, by target type. Results were analyzed 

using two-way ANOVA with repeated-measures on 

the target-type factor.  

To test the first prediction, that within each 

target type there would be no differences by location 

of the causal relations, the results for the No-

Analogy, Analogy-TargetRelations, and Analogy-

BaseRelations groups were analyzed using two-way 

ANOVA with repeated-measures on the Target-type 

factor. As predicted, there was no effect of Group, 

F(2,56)=.55, n.s., and no significant interaction, 

F(4,56)=.77, n.s.
6
 There was a main effect  of Target 

Type, F(2,56) = 56.1, p<.0001. Tukey‘s HSD 

revealed that the effect inference ratings for the GGP 

target were significantly higher than for the GP 

                                                           
5
 Note that the Analogy-BaseRelations+E group’s 

ratings may also look different from the ratings Study 1 

because the base analogs are different: GP+E in this study; 

GGP+E in the prior study. 
6 Although the Analogy-BaseRels group‘s ratings for 

the GP appear to be potentially lower than the No-Analogy 

() and Analogy-TargetRelations groups, post-hoc t-Tests 

are not significant, t(76)=1.0, and t(76)=1.1, respectively. 

Nevertheless, this potential trend may warrant further 

exploration. / Altenrative analysis: Welch ANOVA within 

GP target-type, F(2,28) =0.3, n.s. 

target, and the ratings for the GP target were 

significantly higher than for the GPP target. Thus, 

each of these three groups yielded the same patterns 

of results (see Figure 4).  

 
Figure 4: Mean Similarity and Effect inference ratings, 

by Target Type and Group  
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Note that for the GGP and GPP targets, the 

Analogy-BaseRelations group was given some 

relations in the base, and some in the target. 

Although the ‗model construction‘ task involves 

merging the base‘s (G,P) relations with the target‘s 

relations (e.g., G2), this group‘s effect inferences for 

GGP and GPP targets did not differ from the No-

Analogy and Analogy-TargetRelations groups. This 

null result, together with the main effect of target-

type, is consistent with our claim that the base‘s 

relations are used to construct a causal model in the 

target, and that that constructed model is used in 

making causal inferences about the target.  
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Table 3: Inference ratings by condition and target type  

  
GGP 

 
GP 

 
GPP 

 
Condition N Mean (SD) vs. Chance (50) Mean (SD) vs. Chance (50) Mean (SD) vs. Chance (50) 

No Analogy 11 64.6 (14.9) t(10)=4.6, p<.01 36.4 (29.4) t(10)=1.1, n.s. 25.7 (12.9) t(10)=3.8, p<.01 

AN-Target Rels 9 66.9  ( 8.6) t(8)=5.9, p<.001 43.3 (13.2) t(8)=1.5, n.s. 25.3  ( 4.8) t(8)=15.3, p<.001 

AN-Base Rels 11 64.3 (10.4) t(10)-3.3, p<.01 42.7 (21.5) t(10)=1.5, n.s. 35.4 (12.8) t(10)=6.3, p<.001 

AN-Base Rels+E 11 80.6 (12.9) t(10)=7.9, p<.001 65.8 (21.4) t(10)=2.5, p<.05 27.9  ( 9.0) t(10)=8.1, p<.001 

all groups 42 69.2 (13.6) 
 

47.2 (24.5) 
 

28.7 (11.0) 
 

 

In short, this result is consistent with the 

hypothesis that a causal model constructed by 

analogy (in the Analogy-BaseRelations group) is 

equivalent to a causal model explicitly given in the 

target analog (as in the Analogy-TargetRelations 

group) and to a causal model presented in a target 

without a base analog (No-Analogy group). 

To test the second prediction –  that the explicit 

presence of the effect in the base would increase 

effect ratings in the target – all four groups were 

included in a two-way ANOVA with repeated-

measures on the Target-type factor. As predicted, 

when the Analogy-BaseRelations+E group was 

included in the analysis, the Group by Target-type 

interaction was significant, F(6,76 )=2.8, p<.05. 

There was also a significant effect of Group, 

F(3,76)=4.4, p<.01, and a significant effect of Target 

Type, F(2,76)=83.5, p<.0001.  

Planned simple-effects contrasts revealed that 

within the GP target-type, as predicted,  the Analogy-

BaseRelations+E group rated the effect inference 

higher than did the Analogy-BaseRelations, Analogy-

TargetRelations, and NoAnalogy groups; and, as 

predicted, there were no differences between the 

latter three groups. (Furthermore , when compared 

with chance (50%), only the Analogy-

BaseRelations+E group is significantly above chance 

for the GP target.) Within the GGP target-type, 

planned contrasts again showed that the Analogy-

BaseRelations+E group rated the effect inference 

higher than the other groups, which did not differ 

from one another. Within the GPP target-type, there 

were no differences between any of the groups.  

These patterns suggests that the interaction is 

driven entirely by the Analogy-BaseRelations+E 

group. This is consistent with our hypothesis that the 

presence of E in the base provides a clue to the 

combined strength of the G & P causal factors (i.e., 

the posterior probability, p(E|G,P).  

The finding that the effect inference ratings 

differ only to the extent that E is explicitly present in 

the base – and not based on the location of the 

relations, or indeed on whether an analogy is 

performed at all – supports our claim that, by 

analogical mapping, the base makes two specific 

contributions to knowledge about the causal model in 

the target (i.e., causal structure and a clue to 

combined causal strengths).  

STUDY 3: Computational Simulation  

of “Outsourcing” 

As discussed earlier, Lee & Holyoak claim that ―the 

missing theoretical mechanism for dynamic inference 

evaluation cannot be simply outsourced to some 

postanalogical module‖ (2008b, p1121). We argue 

that the evaluation of the effect inference can indeed 

be ―outsourced‖ to a post-analogical process. As 

proof of concept, we used the stimuli from Study 1 

(which have the same structure as the stimuli used in 

L&H‘s Study 1, 2008b) as input to SME (the 

computational model of structure-mapping theory), 

and then applied a simple algorithm to SME‘s output 

to simulate the post-analogical inference evaluation.  

Method 

The mapping process has been operationalized in the 

Structure Mapping Engine (SME; Falkenhainer, 

Forbus & Gentner, 1989), a computational model that 

instantiates Gentner's (1983) Structure-mapping 

theory. This system operates in a local to global 

fashion, first finding all possible local matches 

between the elements of two potential analogs. It 

combines these into structurally consistent clusters, 

and then combines the clusters (called kernels) into 

the largest and most deeply connected system of 

matches. Other propositions connected to the 

common system in one analog become candidate 

inferences about the other analog. Each of these 

candidate inferences receives a support score. 

Finally, SME computes a structural evaluation score 

estimating the systematicity of the structural match 

(see Forbus, Gentner & Law, 1995). 

For this simulation, we created propositional 

representations of the base and target stimuli used in 

Study 1A. Using blank features, one base item and 

three target items were created, to form three pairs of 

animals (GGP, GG, and GP). SME was used to create 

mappings of these pairs. When multiple mappings 

were generated for a pair, we selected the one with 

the highest structural evaluation score (SES). In each 

mapping, SME computes candidate inferences. 

(These inferences included relational and attribute 

inferences, and were conceptually similar to those in 
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the lists used in Study 1B.) For each candidate 

inference, SME generated a support score, reflecting 

the degree of support that the analogy provides for 

the inference.  

In the second phase of the simulation, we used 

these candidate inference support scores as input for 

a simple algorithm to calculate the effect inference. 

This phase essentially represents the causal model 

that is constructed by the mapping, and that is used to 

evaluate the effect inference.  Conceptually, the 

algorithm gives the proportion of the total causal 

forces that produce the effect. Specifically, it uses the 

number of generative causal relations divided by the 

total number of (generative and preventative) causal 

relations to determine the probability of the effect.  

One way of thinking about this ratio is as votes – it‘s 

the proportion of the total votes that are in favor of 

the effect.  

 (1) E
PG

G



 

 

For each candidate inference, we take SME‘s 

support scores for the candidate inferences and enter 

them into the equation, so the equation for these 

stimuli becomes:  

(2)  E
PGG

GG






21

21  

 

This evaluation algorithm uses SME‘s support 

scores to estimate the final effect inference rating for 

each analog pair. In this way, we use the causal 

model constructed by the analogical mapping (i.e., 

the candidate inferences) to evaluate the Effect 

inference.  

Results and Discussion 

The results of the computational simulation of Study 

1 are shown in Figure 5. As predicted, the results of 

the simulation closely match the human data, both 

from our Study 1A and from L&H‘s Experiment 1 

(2008b).
7
 These results demonstrate that the 

inference evaluation can indeed be outsourced to a 

post-analogical process, and that a two-phase process 

simulation using SME followed by a simple causal 

calculation can closely match the human data.  

We do not claim that this simple equation is 

necessarily the precise evaluation algorithm that 

people use;  other, more complex algorithms may 

yield equivalent results.
8
 We only argue that this 

existence proof supports our claim that causal 

inference evaluations are handled by a post-

                                                           
7 We also ran this simulation on Lee & Holyoak‘s 

stimuli from their Exp. 2 (2008b), with similar results. 

Reporting those results is beyond the space constraints of 

this paper.  
8 In fact, a more complex algorithm could make 

better use of the posterior probability proxy described in 

Study 2.  

analogical process. Clearly, many further simulations 

may be run to further test this claim.  
 

Figure 5: Effect inferences for Simulation, compared 

with human data from Exp. 1a and L&H (2008b, Exp1).  

 

GENERAL DISCUSSION 

Three studies addressed the questions of how causal 

analogies are processed. In Study 1, we tested 

structure mapping theory‘s prediction that the overall 

inductive strength of causal analogies parallels the 

similarity ratings of analogous pairs. We found that 

although the effect inference dissociates from 

similarity (replicating Lee & Holyoak, 2008b), the 

overall inductive strength of the analogy – consistent 

with structure-mapping theory – does follow the 

same pattern as the similarity ratings.  

In Study 2, we examined the claim that in 

causal analogies, the base makes two particular 

contributions to the causal system in the target. The 

results suggest that the effect inferences made from a 

causal analogy do not differ from those made from a 

single example, except to the extent that the causal 

analogy may provide a clue to the conditional 

probability of the effect, given the causal antecedents 

([p(E|G,P)].  

Taken together, these findings are consistent 

with / support our claims that (1) the causal model in 

the target analog is constructed by analogical 

inference,  and that (2) the base contributes 

information about the combined strength of the 

causal factors in producing the effect.   

Study 3 tested the prediction that a 

computational simulation using SME (which 

implements structure-mapping theory), followed by a 

post-analogical algorithm, can match human effect 

inferences. The results of this simulation, bolstered 

by the results of Studies 1 and 2, support our claim 

that inference evaluation can occur post-analogically.  

These findings are important for a few reasons. 

First, they support the hypothesis that analogical 

reasoning provides an important method for learning 

about novel systems, and particularly for 

understanding the causal structure of a novel system. 

Second, these findings are consistent with the 
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predictions of SMT, that similarity is an important 

contributor to overall inferential strength.   

Our assertion is that analogy does not explain 

everything, nor should it. If other reasoning processes 

explain causal inferences adequately, even when 

reasoning from causal analogies, there’s no 

parsimonious reason to suppose that analogical 

processing models should be adapted to do their job. 

In sum, we maintain that analogy is important for 

learning about novel causal systems, but models of 

analogy need not subsume causal inferencing 

processes.  
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APPENDIX A: SAMPLE STIMULI 

 

Study 1 

GGP target-type: 
 

Animal A has enzyme aliesterase, neurotransmitter 

tyrosine, hormone TSH, and exceptional hearing. 

For animal A, enzyme aliesterase tends to cause 

exceptional hearing;  

neurotransmitter tyrosine tends to cause exceptional 

hearing;  

and hormone TSH tends to prevent exceptional hearing. 

 

Animal B has enzyme aliesterase and neurotransmitter 

tyrosine. 

 

Study 1A, similarity:  

How similar are animals A and B? (on a scale of 0-10) 

 

Study 1A, inference:  

For animal B, what percentage have exceptional hearing? 

(on a scale of 0-100) 

  

Study 1B, multiple inferences: 

Which of the following are probably true of Animal B? 

Please check all that apply. 

[  ] Enzyme aliesterase tends to cause exceptional hearing 

[  ] Neurotransmitter tyrosine tends to cause exceptional 

hearing 

[  ] Hormone TSH tends to prevent exceptional hearing 

[  ] Has exceptional hearing 

 

Study 2  

GPP target-type for the Analogy-BaseRelations+E group:  

 

Animal R has blocked oil glands, filaggrin protein, and 

scaly skin. 

For animal R, blocked oil glands tend to cause scaly skin,   

                and filaggrin protein tends to prevent scaly skin. 

 

Animal S has blocked oil glands, filaggrin protein and a 

marker chromosome. 

 

For animal S, a marker chromosome tends to prevent scaly 

skin. 

 

How likely is it that animal S has scaly skin? (on a scale of 

0-100) 

 

 

 

 

Study 3 

Base and GGP case representations used as input to 

Structure Mapping Engine.  

 
(Case Base)  

(knownSentence (isa a1 Animal)) 

 

(knownSentence (isa a1 f1))  

; f1 is an attribute of a1.  

(knownSentence (isa a1 f2)) 

(knownSentence (isa a1 f3)) 

(knownSentence (isa a1 e1)) 

 

(knownSentence (causes-Underspecified 

(isa a1 f1) (isa a1 e1))) 

; A1 having feature F1 causes A1 to 

have feature E1.  

(knownSentence (causes-Underspecified

 (isa a1 f2) (isa a1 e1))) 

(knownSentence (prevents-Underspecified

 (isa a1 f3) (isa a1 e1))) 

 

 

(Case Target_GGP)  

(knownSentence (isa a2 Animal)) 

(knownSentence (isa a2 f1)) 

(knownSentence (isa a2 f2)) 

(knownSentence (isa a2 f3)) 

 


