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ABSTRACT

This paper describes the structure-mapping engine (SME), a program for studying . analogical
processing . SME has been built to explore Gentner's structure-mapping theory of analogy, and
provides a "tool kit" for constructing matching algorithms consistent with this theory. Its flexibility
enhances cognitive simulation studies by simplifying experimentation . Furthermore, SME is very
efficient, making it a useful component in machine learning systems as well . We review the
structure-mapping theory and describe the design of the engine . We analyze the complexity of the
algorithm, and demonstrate that most of the steps are polynomial . typically bounded by O(N). Next
we demonstrate some examples of its operation taken from our cognitive simulation studies and work
in machine learning. Finally, we compare SME to other analogy programs and discuss several areas
for future work.

1 . Introduction

In analogy, a given situation is understood by comparison with another similar
situation. Analogy may be used to guide reasoning, to generate conjectures
about an unfamiliar domain, or to generalize several experiences into an
abstract schema . Consequently, analogy is of great interest to both cognitive
psychologists and artificial intelligence researchers. Psychologists aim to clarify
the mechanisms underlying analogy in order to understand human learning and
reasoning. Artificial intelligence researchers aim to emulate analogical proces-
sing on computers to produce more flexible reasoning and learning systems .

This paper describes the structure-mapping engine (SME), a program built to
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explore the computational aspects of Gentner's structure-mapping theory of
analogical processing [28 . 30] . SME constructs all consistent ways to interpret a
potential analogy and does so without backtracking . It is both flexible and
efficient . Beyond this, SME provides a -tool kit" for building matchers that
satisfy the structural consistency constraint of Gentner's theory . Additional
constraints defining a matcher are specified by a collection of rules . which
indicate local, partial matches and estimate how strongly they should be
believed. The program uses these estimates and a novel procedure for combin-
ing the local matches to efficiently produce and evaluate all consistent global
matches .

Cognitive simulation studies can offer important insights for understanding
the human mind . They serve to verify psychological theories and supply a
detailed vocabulary for describing cognitive processes . Cognitive simulations
can provide "idealized subjects," whose prior knowledge and set of available
processes is completely known to the experimenter. Unfortunately, cognitive
simulations tend to be complex and computationally expensive (cf. [2, 72]) .
Complexity can obscure the relationship between the theory and the program .
While all design decisions affect a program's performance, not all of them are
directly motivated by the theory being tested . To assign credit properly (or to
model performance in detail) requires exploring a space of similar architec-
tures. Such • explorations are very difficult if the major way to change the
program's operation is surgery on the code . Complex programs also tend to be
computationally expensive, which usually means fewer experiments are per-
formed and fewer possibilities are explored . While there have been several
important Al programs that study computational aspects of analogy (e.g.,
[5, 78, 79]), they were not designed to satisfy the above criteria .,

Over the last decade there have been a variety of programs that simulate
different aspects of analogical processing (as reviewed in Section 6). However,
the progress to date has been disappointingly slow . Often papers describe
programs that work on only a handful of carefully chosen examples, and do not
specify the algorithms in a replicable fashion . We believe the difficulty has been
due in part to the lack of a good problem decomposition . Without some
theoretically motivated decomposition of analogy, it is easy to conflate distinct
problems, and become lost in the space of possible mechanisms . Our decompo-
sition, described in the next section, is psychologically motivated . Roughly,
SME focuses on the mapping process in analogy, leaving the access and
application aspects to future studies . The power of the program and its success
on a wide variety of examples (over 40 as of this writing) provides additional
evidence that the decomposition is a good one .

This paper examines the architecture of the structure-mapping engine and
how it has been used for machine learning and cognitive simulation . First, we
review Gentner's structure-mapping theory and some of the psychological
evidence for it . Next we discuss the organization of SME, including knowledge
representation conventions and the algorithm . After a complexity analysis . we
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then illustrate SME's operation on several examples drawn from machine
learning and cognitive simulation studies . Related work in both Al and
psychology is reviewed next, followed by a discussion of future work .

2. Structure-Mapping Theory

The theoretical framework for this research is Gentner's structure-mapping
theory of analogy [28-32 .34] . Structure-mapping describes the set of implicit
constraints by which people interpret analogy and similarity . The central idea is
that an analogy is a mapping of knowledge from one domain (the base) into
another (the target) which conveys that a system of relations known to hold in
the base also holds in the target . The target objects do not have to resemble
their corresponding base objects . Objects are placed in correspondence by
virtue of corresponding roles in the common relational structure .

This structural view of analogy is based on the intuition that analogies are
about relations, rather than simple features . No matter what kind of knowl-
edge (causal models, plans, stories, etc.), it is the structural properties (i .e ., the
interrelationships between the facts) that determine the content of an analogy .
For example, consider the water flow and heat flow situations shown in Fig . 1 .
These situations are thought to be analogous because they share the complex
relationship known as "flow." In each, we have a notion of something flowing
downhill, from a source to a destination . We prefer to ignore the appearances
and even specific defining properties of the objects, such as the fact that water
and coffee are both liquids. Indeed, focusing on these attributes tends to
confuse our picture of the analogy .

2.1 . Subprocesses in analogy

Structure-mapping decomposes analogical processing into three stages
([27, 31, 35], see also [10, 11, 42, 51]) :

(1) Access : Given a current target situation, retrieve from long-term me-
mory another description, the base, which is analogous or similar to the target .

Fig. 1 . Two physical situations involving flow (adapted from [zl) .
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(2) Mapping and inference : Construct a mapping consisting of correspond-
ences between the base and target . This mapping can include the candidate
inferences sanctioned by the analogy, which specify what additional knowledge
in the base can potentially be transferred to the target .

(3) Evaluation and use : Estimate the "quality" of the match . Three kinds of
criteria are involved [31 . 321 . The structural criteria include the number of
similarities and differences, the degree of structural similarity involved, and the
amount and type of new knowledge the analogy provides via the candidate
inferences . The second criterion concerns the validity of the match and the
inferences it sanctions. The inferences must be checked against current world
knowledge to ensure that the analogy at least makes sense, and may require
additional inferential work to refine the results. The third criterion is relevance,
i .e ., whether or not the analogy is useful to the reasoner's current purposes .
Structure-mapping focuses on structural criteria only, since they define and
distinguish analogy from other kinds of inference .

The structure-mapping engine emulates the mapping stage of analogy and
provides a structural, domain-independent evaluation of the match . In other
work we have used SME in modeling access and evaluation (17,18,681. but
here we focus on mapping and structural evaluation .

2.2. Constraints on analogy

Structure-mapping defines similarity in terms of matches between the internal
structures of the descriptions being compared. Consequently, we need some
terminology for describing such structures . Section 3.1 will introduce several
formal descriptions . Here we provide some motivating intuitions. Consider a
propositional statement, like

CAUSE[GREATER-THAN(x, y), BREAK(x)J

The chief relation involved in this statement is CAUSE, and its arguments are
GREATER-THAN(x, y) and BREAK(x). We can view this statement in the usuful
way as a tree, i .e., the root of the tree is a node whose label is the predicate
CAUSE and the root's children are nodes representing the relation's arguments
(Fig . 2 provides an example of this view) . This view is useful in understanding
structure-mapping because it provides a spatial metaphor for collections of
statements. For instance, we can say that the arguments are "below" the
CAUSE statement in the internal structure of the description, and describe a
collection of statements with logical constraints between them (explicitly
represented by statements involving logical connectives and/or relationships)
as a "connected" system of relations .

One formal definition is needed before proceeding. We define the order of
an item in a representation as follows : Objects and constants are order 0 . The

B. FALKENHAINER ET AL .
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Fig. 2. Simplified water flow and heat flow descriptions, .

order of a predicate is one plus the maximum of the order of its arguments .
Thus GREATER-THAN(x, y) is first-order if x and y are objects, and CAUSE
(GREATER-THAN(x, y), BREAK(x)] is second-order . Examples of higher-order
relations include CAUSE and IMPLIES . This definition of order should not be
confused with the standard definition of the order of a logic .' Using the tree
view of statements, this definition of order indicates how deep the structure is
below an item . Notice that intricate explanations with many layers of justifica-
tions can give rise to representation structures of higher order, since there will
be a high degree of nesting .
Let {B,), (T;) denote the items in the base and target representations,

respectively. Let the subsets (b,), {t; } denote the objects in the base and target,
respectively. The tacit constraints on the analogical mapping M can be charac-
terized as follows :

(1) Objects in the base are placed in correspondence with objects in the
target :

M :b;--t ;

(2) Isolated object descriptions are discarded unless they are involved in a
larger relational structure :

M :RED(b;)-4RED(t,) .

(3) Relations between objects in the base tend to be mapped across :

M :COLLIDE(b ;, b,)-- COLLIDE(t,, t,)

(4) The particular relations mapped are determined by systematicity, as

Under the standard definition, a logic is first-order if variables only range over objects and
second-order when it permits variables to range over predicates as well .
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defined by the existence of higher-order constraining relations which can
themselves be mapped :

M : CAUSE(PUSH(b,, b,), COLLIDE(b,, b.,)]
CAUSE(PUSH(t,, t,), COLLIDE(t,, t k )]

We require M to be one-to-one : that is . no base item maps to two target
items and no target item maps to two base items . Furthermore, we require M
to be structurally consistent . This means that, in addition to being 1 : 1 . if M
maps B, onto T,, then it must also map the arguments of B, onto the
corresponding arguments of T, .

Consider for example a simple analogy between heat flow and water flow .
Figure 2 shows a simplified version of what a learner might know about the
situations pictured in Fig . 1 . In order to comprehend the analogy "heat is like
water" a learner must do the following (although not necessarily in this order) :

(1) Set up the object correspondences between the two domains :

water- heat,

	

pipe bar,
beaker -+ coffee,

	

vial- ice-cube

(2) Discard object attributes, such as LIOUID(water) .
(3) Map base relations such as

_ GREATER-THAN(PRESSURE(beaker), PRESSURE(vial)J

to the corresponding relations in the target domain .
(4) Observe systematicity . i.e . . keep relations belonging to a systematic

relational structure in preference to isolated relationships . In this example .

CAUSE(GREATER-THAN(PRESSURE(beaker), PRESSURE(vial)J,
FLO1M(beaker, vial, water, pipe))

is mapped into

CAUSE(GREATER-THAN(TEMPERATURE(coffee),
TEMPERATURE (ice-cube)),

FLOW(coffee, ice-cube, heat, bar))

while isolated relations, such as

GREATER-THAN(DIAMETER(beaker), DIAMETER(vial)J

are discarded .

I
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The systematicity principle is central to analogy. Analogy conveys a system of
connected knowledge . not a mere assortment of independent facts . Preferring
systems of predicates that contain higher-order relations with inferential import
is a structural expression of this tacit preference for coherence and deductive
power in analogy . Thus, it is the amount of common higher-order relational
structure that determines which of several possible matches is preferred . For
example . suppose in the previous example we were concerned with objects
differing in specific heat . such as a metal ball-bearing and a marble of equal
mass, rather than temperatures . Then DIAMETER would enter the mapping
instead of (or in addition to) PRESSURE . since DIAMETER affects the capacity
of a container, the analogue to specific heat .

2.3 . Other types of similarity

In addition to analogy, the distinctions introduced by structure-mapping theory
provide definitions for several other kinds of similarity . In all cases, we require
one-to-one . structurally consistent mappings . As we have seen, in analogy only
relational structures are mapped . Aspects of object descriptions which play no
role in the relational structure are ignored . By contrast, in literal similarity both
relational predicates and object descriptions are mapped .' Literal similarity
typically occurs in within-domain comparisons . in which the objects involved
look alike as well as act alike . An example of a literal similarity is the
comparison "Kool-Aid is like juice ." In mere-appearance matches, it is pri-
marily the object descriptions which are mapped, as in the metaphor

"The road is like a silver ribbon ."

A fourth kind of mapping is the abstraction mapping. Here, the entities in
the base domain are variables, rather than objects . Few, if any, attributes exist
that do not contribute to the base's relational structure . Applying an abstrac-
tion match is very close to the instantiation of a rule . The difference is that
only entities may be variables, whereas in many pattern-directed rule systems
predicates may be used in substitutions as well .

2 .4 . Empirical evidence

Although the focus of this paper is on computational modeling, two sets of
psychological findings are particularly relevant . First, empirical psychological
studies have borne out the prediction that systematicity is a key element of
people's implicit rules for analogical mapping . Adults focus on shared sys-
tematic relation structure in interpreting analogy . They tend to include rela-

Notice that our structural characterization of literal similarity differs from some other psycho-
logical approaches (e .g . . 1701) .
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tions and omit attributes in their interpretations of analogy, and they judge
analogies as more sound and more apt if base and target share systematic
relational structure [9 . 28, 33, 35, 361. In developmental work, it has been
found that eight-year olds (but not five-year olds) are better at performing
difficult mappings when the base structure is systematic [371 . Second . there is
also empirical evidence that the different types of similarity comparisons
defined by structure-mapping have different psychological properties [30-32] .

3 . The Structure-Mapping Engine

A simulation of Gentner's theory has been implemented in the structure-
mapping engine (SME) . Given descriptions of a base and target, SME constructs
all structurally consistent mappings between them . The mappings consist of
pairwise matches between statements and entities in the base and target, plus
the set of analogical inferences sanctioned by the mapping . SME also provides a
structural evaluation score for each mapping according to the constraints of
systematicity and structural consistency . For example, given the descriptions of
water flow and heat flow shown in Fig . 2, SME would offer several alternative
interpretations. In one interpretation, the central inference is that water
flowing from the beaker to the vial corresponds to heat flowing from the coffee
to the ice cube. Alternatively, one could map water to coffee, since they are
both liquids . The first interpretation has a higher structural evaluation score
than the second, since a larger relational structure can be mapped .

Importantly, SME is not a single matcher, but a simulator for a class of
matchers. The structure-mapping notion of structural consistency is built into
the system. However, which local elements can match and how these combina-
tions are scored can be changed by implementing new match rules that govern
what pairwise matches between predicates are allowable and provide local
measures of evidence. Thus, for example, SME can be used to simulate all the
similarity comparisons sanctioned by structure-mapping theory, not just ana-
logy . Since the match rules can include arbitrary LISP code, it is possible to
implement many other kinds of matchers as well .

This section describes the SME algorithm in sufficient detail to allow replica-
tion . We start by specifying some simple conventions for knowledge repre-
sentation which are essential to understanding the algorithm .

3.1 . Representation conventions

We make as few representational assumptions as possible so that SME remains
domain-independent. We use a typed (higher-order, in the standard sense)
predicate calculus to represent facts . The constructs of this language are :

- Entities : Individuals and constants .
- Predicat. .s : There are three types : functions . attributes . and relations . Each
is described below .

1
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- Dgroup : A description group is a collection of entities and facts about
them . considered as a unit .

We examine each construct in turn .

3 .1 .1 . Entities

Entities are logical individuals, i .e ., the objects and constants of a domain .
Typical entities include physical objects, their temperature, and the substance
they are made of . Primitive entities are the tokens or constants of a description
and are declared with the defEntity form :

(defEntity (name)
[ :type (EntityType) ]
[:constant? {tInil}])

Entities can also be specified in the usual way by compound terms, i .e . the
term (pressure We1132) refers to a quantity .
The :type option establishes a hierarchy of entity types . For example . we

state that our sun is a particular instance of a star with

(defEntity sun :type Star)

Constants are declared by using the :constant? option, as in

(defEntity zero :type number :constant? t)

3 .1 .2. Predicates

Classically . "predicate" refers to any functor in a predicate calculus statement .
We divide predicates into three categories : functions, attributes, and relations .
Each is treated differently under structure-mapping .

- Functions : Functions map one or more entities into another entity or
constant. For example, (PRESSURE piston) maps the physical object piston into
the quantity which describes its pressure . We treat boolean predicates as
attributes or relations (see below), rather than functions . Structure-mapping
allows substitution of functions to acknowledge their role as an indirect way of
referring to entities . All other predicates must be matched identically .
- Attributes : An attribute describes some property of an entity . Examples of

attributes include RED and CIRCLE . We restrict attributes to take only one
argument-if there are multiple arguments we classify the predicate as a
relation. It is well-known that a combination of a function and a constant can
be logically equivalent to an attribute . For example,

(RED BlockA)
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and
(= (COLOR BlockA) RED)

are logically equivalent . However, these two forms do not behave identically
under structure-mapping . In analogy, attributes are ignored unless they are
part of some higher-order structure . When attributes are matched (e .g . . literal
similarity and mere-appearance comparisons), they must match identically . We
assume that a reasoner has a particular piece of information represented in one
form or another, but not both, at any particular time (we return to this issue in
Section 7.1) .

- Relations : Like attributes, relations range over truth values . Relations
always have multiple arguments, and the arguments can be other predicates as
well as entities . (However, we classify logical connectives . regardless of the
number of arguments, as relations .) Examples of relations include CAUSE,
GREATER-THAN, and IMPLIES . In structure-mapping . relations must always
match identically .

Predicates are declared with the defPredicate form. It has several options :

(defPredicate (Name) (ArgumentDeclarations) (PredicateType )
:expression-type (Defined Type)
(:commutative? (tInil)]
[:n-ary? (tinil)])

(Predicate Type) is either function, attribute, or relation, according to what
kind of predicate (Name) is. The (ArgumentDeclarations) specifies the
predicate's arity and allows the arguments to be named and typed . For
example, the declaration :

(defPredicate CAUSE ((antecedent sevent) (consequent sevent)) relation)

states that CAUSE is a two-place relational predicate . Its arguments are called
antecedent and consequent, both of type sevent . (We use sevent to mean the
union of states and events .) The names and types of arguments are for the
convenience of the representation builder, and are not currently used by SME .
However, the predicate type is very important to the algorithm, as we will see
below.

The optional declarations :commutative? and :n-ary? provide SME with im-
portant syntactic information . :commutative? indicates that the predicate is
commutative, and thus the order of arguments is unimportant when matching .
:n-ary? indicates that the predicate can take any number of arguments . Declar-
ing n-ary predicates reduces the need for applying associativity to binary
predicates 1691, allowint; SME to avoid explicitly encoding associative laws in
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the matcher. Examples of commutative n-ary predicates include AND. OR, and
SUM .

3 .1 .3 . Expressions and dgroups

For simplicity, predicate instances and compound terms are called expressions .
A description group, or dgroup, is a collection of primitive entities and
expressions concerning them . Dgroups are defined with the defDescription form :

(defDescription (DescriptionName)
entities ((Entity, ), (Entity,) (Entity;))
expressions ( ( Expression Declarations) ))

where (Expression Declarations) take the form

(expression) or ((expression) :name (ExpressionName) )

The :name option is provided for convenience ; (expression) will be substituted
for every occurrence of (Expression Name) in the dgroup's expressions when
the dgroup is created . For example, the description of water flow depicted in
Fig. 2 was given to SME as

(defDescription simple-water-flow
entities (water beaker vial pipe)
expressions (((flow beaker vial water pipe) :name wflow)

((pressure beaker) :name pressure-beaker)
((pressure vial) :name pressure-vial) .
((greater pressure-beaker pressure-vial) :name >pressure)
((greater (diameter beaker) (diameter vial))
:name >diameter)
((cause >pressure wflow) :name cause-flow)
(flat-top water)
(liquid water)))

The description of heat flow depicted in Fig . 2 was given to SME as

(defDescription simple-heat-flow
entities (coffee ice-cube bar heat)
expressions (((flow coffee ice-cube heat bar) :name hflow)

((temperature coffee) :name temp-coffee)
((temperature ice-cube) :name temp-ice-cube)
((greater temp-coffee temp-ice-cube) :name >temperature)
(flat-top coffee)
(liquid coffee)))
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Notice that each expression does not need to be declared explicitly : for
example . SME will automatically create and name expressions corresponding to
(diameter beaker) and (diameter vial) in the water flow description .
We will refer to the expressions and entities in a dgroup collectively as items .

To describe the SME algorithm we need some terminology to express the
structural relations between items . These relationships form directed acyclic
graphs . so we adopt some standard graph-theory terminology . Each item
corresponds to a vertex in a graph. When item 5, has 5, as an argument . there
will be a directed arc from the node corresponding to 5, to the node
corresponding to 5,. The offspring of an expression are its arguments . By
definition, primitive entities (i .e . . those denoted by constants) have no off-
spring . Expressions which name entities by compound terms are treated like
any other item . An item 5, which is in the transitive closure (arguments of
arguments, etc.) of another item 5, is said to be a descendant of 5,, while 5, is
said to be an ancestor of J, . An item with no ancestors is called a root . The
term Reachable( .) refers to the transitive closure of the subgraph starting at
J . We define the depth of an item with respect to Reachable(,) by the
minimum . number of arcs it takes to reach the item starting from J .

3.2 . The SME algorithm: Overview

Given descriptions of a base and a target, represented as dgroups, SME builds
all structurally consistent interpretations of the comparison between them .
Each interpretation of the match is called a global mapping, or gmap.3 Gmaps
consist of three parts :

(1) Correspondences : A set of pairwise matches between the expressions
and entities of the two dgroups .

(2) Candidate inferences : A set of new expressions which the comparison
suggests holds in the target dgroup .

(3) Structural evaluation score (called SES for brevity) : A numerical estimate
of match quality based on the gmap's structural properties .

Following the structure-mapping theory, we use only purely structural
criteria to construct and evaluate the mapping . SME has no other knowledge of
either base or target domain . Neither rules of inference nor even logical
connectives themselves are built into the algorithm . Each candidate inference
must be interpreted as a surmise, rather than a logically valid conclusion . The
SES reflects the aesthetics of the particular type of comparison, not validity or

'The definition of gmap is inspired in part by de Kleei s work on assumption-hosed truth
maintenance, although we do not use an ATMS in the actual code . The idea of combining local
solutions by constructing maximally consistent sets is analogous to the process of interpretation
construction in an ATMS. We also find hit-vectors a useful implementation technique for the set of
operations needed to maintain structural consistency .
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potential usefulness . Testing the validity of candidate inferences and determin-
ing the utility of a match are left to other modules, as described in Section 2 .

Match rules specify which pairwise matches are possible and provide local
measures of quality used in computing the SES . These rules are the key to
SME's flexibility . To build a new matcher one simply loads a new set of match
rules . This has several important advantages . First, we can simulate all of the
similarity comparisons sanctioned by structure-mapping theory with one pro-
gram . Second . we could in theory* "tune - the rules if needed to simulate
particular kinds of human performance (although, importantly . this flexibility
has not been needed so far!) . Third, we can also simulate a number of other
analogy systems (including [43, 781, as described below) for comparison pur-
poses .

Conceptually, the SME algorithm is divided into four stages :

(1) Local match construction : Finds all pairs of ((Baseltem), ( Targetltem))
that can potentially match . A match hypothesis is created for each such pair to
represent the possibility that this local match is part of a global match .
(2) Gmap construction : Combines the local matches into maximal consistent

collections of correspondences .
(3) Candidate inference construction : Derives the inferences suggested by

each gmap .
(4) Match evaluation : Attaches evidence to each local match hypothesis and

uses this evidence to compute structural evaluation scores for each gmap .

We now describe each computation in detail, using a simple example to
illustrate their operation .

3 .2 .1 . Local match construction (Step 1)

Given two dgroups, SME begins by finding potential matches between items in
the base and target (see Fig . 3). Allowable matches are specified by match
constructor rules, which take the form :

(MHCrule ((Trigger) (BaseVariable) (TargetVariable )
[:test (TestForin )])

(Body) )

In all match constructor rules, (Body) will be executed in an environment in
which (BaseVariable) and (TargerVariable) are bound to items from the base
and target dgroups, respectively . If (TestForm) is present. the bindings must
satisfy the test (i .e ., the form when evaluated must return non-NIL) . There are
two possible values for ( Trigger) . A filter trigger indicates that the rule is
applied to each pair of items from the base and target . These rules create an
initial set of match hypotheses between individual base and target expressions .
For example, the following rule hypothesizes a match between any two
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13 - MH between predicates

A - kH between entities (Emap)

Fig . 3 . Local match construction . The graphs corresponding to the water flow and heat flow
descriptions of Fig. 2 are depicted on the left and right panels, respectively . The squares and
triangles in the middle represent the match hypotheses created by the literal similarity rules for
these dgroups. The dashed arrows indicate which base and target items are conjectured as
matching by each match hypothesis . The squares represent match hypotheses involving expres-
sions, while the triangles represent match hypotheses involving entities . Notice how sparse the
match is . Expression matches are only created when relations are identical . and matches between
functions and entities are only created to support expression matches . This "middle out" local

match computation provides SME with much of its power .

expressions that have the same functor :

(MHCrule (filter ?b ?t :test (equal (expression-functor ?b)
(expression-functor ?t)))

(install-MH ?b ?t))

An :intem trigger indicates that the rule should be run on each newly created
match hypothesis, binding the variables to its base and target items . These
rules create additional matches suggested by the given match hypothesis . For
example, hypothesizing matches between every pair of entities would lead to
combinatorial explosions. Instead, we can use an antem rule to create match
hypotheses between entities in corresponding argument positions of other
match hypotheses, since these correspondences will be required for structural
consistency .

Appendix A lists the rule sets used to implement each similarity comparison
of structure-mapping (analogy, literal similarity, and mere appearance) . Notice
that each rule set is small and simple (we describe the evidence rules below) .
The literal similarity rule set uses only three match constructor rules . One rule

B . FALKENHAINER ET AL .
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is the filter rule shown above . The other two are intern rules . The content of
the first is, roughly .

If the match hypothesis concerns two expressions . then create
match hypotheses between any corresponding arguments that are
both functions or entities .

The second is a specialization of this which runs only on commutative
predicates (i .e . . the "corresponding arguments" condition is removed) . The
analogy rule set differs in that matches are created between attributes only
when they are part of some higher-order structure . The mere-appearance rule
set differs by completely ignoring higher-order structure .

The result of running the match constructor rules is a collection of match
hypotheses . We denote the hypothesis that b ; and t, match by MH(b;, tj ) .
When no ambiguity will result, we will simply say MH. We will use the same
terminology to refer to the structural properties of graphs of match hypotheses
(offspring, descendants . ancestors, root) as we use for describing items in
dgroups. As with dgroups, the collection of match hypotheses can be viewed as
a directed acyclic graph, with at least one (and possibly many) roots .

Example (Simple analogy between heat and water) . In this example we will use
the literal similarity rule set, rather than analogy, in order to better illustrate
the algorithm . The result of running these rules on the water flow and heat flow
dgroups of Fig. 2 is shown in Fig . 3 (see also Fig . 4) . Each match hypothesis
locally pairs an item from the base dgroup with an item from the target dgroup .

There are several points to notice in Fig . 4. First, there can be more than
one match hypothesis involving any particular base or target item . Here.
TEMPERATURE can match with both PRESSURE and DIAMETER, since there
are corresponding matches between the GREATER-THAN expressions in both
dgroups (MH-1 and MH-6) . Second, note that all predicates which are not
functions must match identically . Entities, on the other hand, are matched on
the basis of their roles in the predicate structure . Thus while TEMPERATURE
can match either PRESSURE or DIAMETER, GREATER cannot match anything
but GREATER. This distinction reflects the fact that functions are often used to
refer to objects or constants, which are fair game for substitution under
analogy. Third, not every possible correspondence is created. We do not, for
example, attempt to match TEMPERATURE with water or heat with beaker .
Functions only match with other functions: and local matches between entities
are only created when justified by some other match . In general, this signifi-
cantly constrains the number of possible matches .

3 .2 .2 . Global match construction (Step 2)

The second step in the SME algorithm combines local match hypotheses into
collections of global matches (gmaps). Intuitively, each global match is the
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MH-12
B: Flat-top-4
T: Flat-top-6

MH-14
8: water
T: coffee

MH-13
B : Liquid-3
T : Liquid-5

MH-9
B : Wflow
T : Hfiow

MH-10

	

MH-11
8: water B: pipe
T: heat

	

T: bar

MH-1

	

MH-6
B : >Pressure

	

B: >Olameter
T: >Temperature

	

T: >Temperature

MH-2

	

MH-3

	

MH-7

	

MH-e
B : Pressure-beaker 8: Pressure-vial

	

8: Diameter-1

	

B: Diameter-2
T: Temp-coffee

	

T: Temp-ice-cube

	

T: Temp-coffee T: Temp-ice-cube

MH-4
6: beaker
T: coffee

M +-S
8: vial
T: ice-cube

Fig. 4. Water flow/heat flow analogy after local match construction . Here we show the graph of
match hypotheses depicted schematically in Fig . 3. augmented by links indicating expression-to-
arguments relationships . Match hypotheses which are not descended from others are called roofs
(e .g . . the matches between the GREATER predicates . MH.1 and MH-6. and the match for the
predicate FLOW. MH-9) . Match hypotheses between entities are called emaps (e.g . . the match
between beaker and coffee, MH-4). Emaps play an important role in algorithms based on structural

consistency .

largest possible set of match hypotheses that depend on the same one-to-one
object correspondences .

More formally, gmaps consist of maximal, structurally consistent collections
of match hypotheses . A collection of match hypotheses is structurally consistent
if it satisfies two constraints :

(1) One-to-oneness: The match hypotheses in the collection do not assign
the same base item to multiple target items or any target item to multiple base
items .

(2) Support: If a match hypothesis MH is in the collection, then so are match
hypotheses which pair the arguments of MH's base and target items .

The one-to-one constraint allows straightforward substitutions in candidate
inferences. The support constraint preserves connected predicate structure . A
collection is maximal if adding any additional match hypothesis would render
the collection structurally inconsistent .

Requiring structural consistency both reduces the numoer of possible global
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collections and helps preserve the soundness and plausibility of the candidate
inferences . Without it, every collection of local matches would need to be
considered, and effort would be wasted on degenerate many-to-one mappings
without any possible inferential value . The maximality condition also serves to
reduce the number of gmaps, since otherwise every subset of a gmap could
itself be a gmap .

Global matches are built in two steps :

(1) Compute consistency relationships : For each match hypothesis . generate
(a) the set of entity mappings it entails, (b) which match hypotheses it locally
conflicts with, and (c) which match hypotheses it is structurally inconsistent
with .

(2) Merge match hypotheses : Compute gmaps by successively combining
match hypotheses as follows :

(a) Form initial combinations : Combine the descendents of the highest-
order structurally consistent match hypotheses into an initial set of
gmaps .

(b) Combine dependent gmaps : Merge initial gmaps that have overlapping
base structure, subject to structural consistency .

(c) Combine independent collections : Form complete gmaps by merging
the partial gmaps from the previous step, subject to structural con-
sistency, keeping only the maximal results .

Importantly. the process of gmap construction is independent of gmap
evaluation . Which gmaps are constructed depends solely on structural con-
sistency . Numerical evidence, described below, is used only to compare their
relative merits .

We now describe the algorithm in detail .

Computing consistency relationships
Consistency checking is the crux of gmap construction . To doo this we compute
for each match hypothesis (a) the entity mappings it entails and (b) the set of
match hypotheses it is inconsistent with .

Consider a particular match hypothesis MH(b ;, t,) involving base item b, and
target item t . . If b ., t, are expressions, then by the support constraint the match
hypotheses linking their arguments must also be in any collection that
MH(b ;, ti ) is in. Applying this constraint recursively, all descendants of
MH(b ;, t.) must be in the same collection if it is structurally consistent (see Fig .
5). Since the chain of descendants ends with match hypotheses involving
entities, each match hypothesis implies a specific set of entity correspondences :

Definition 3.1 . An emap is a match hypothesis between entities .
Emaps(MH(b ;, t,)) represents the set of emaps implied by a match hypothesis
MH(b,, t i ) . Emaps(MH(b ;, t,)) is simply the union of the cmaps supported by
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Fig. 5. Water flow/heat flow analogy after computation of Conflicting relationships. Simple lines
show the tree-like graph that the support constraint imposes upon match hypotheses. Lines with
circular endpoints indicate the Conflicring relationships between matches . Some of the original
lines from match hypothesis construction have been left in to show the source of a few Conflicting

relations .

MH(b;, t/ )' s ' descendants. We also include match hypotheses involving func-
tions in Emaps(MH(b;, t/ )) .

To enforce one-to-one mappings we must associate with each MH(b, . t;) the
set of match hypotheses that provide alternate mappings for b ; and ti . Clearly,
no member of this set can be in the same gmap with MH(b; . t i ) .

Definition 3 .2. Given a match hypothesis MH(b,, t,), the set Conflicting
(MH(bi , ti )) consists of the set of match hypotheses that represent the alter-
nate mappings for b, and t, :

Conflicting(MH(b ; . t i ))

M [ U {MH(bkI ti)l bk O b,}] U [ U {MH(bi . rk)I tk O t / }] .
hkEbase

	

r,tErnret

The set Conficting(MH(b ; . t,)) only notes local inconsistencies (see Fig . 5) .
However, we can use it and Emaps(MH(b;, ti )) to recursively define the set of
all match hypotheses that can never be in the same gmap as MH(bi , t i ) .

Definition 3 .3. The set NoGood(MH;) is the set of all match hypotheses which
can never appear in the same gmap as MH; . This set is recursively defined as
follows: if MH; is an emap. then NoGood(MH;) Conflicting(MH; ) . Other-
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wise, NoGood(MH,) is the union of MH,'s Conflicting set with the NoGood
sets for all of its descendants, i .e .,

NoGood(MH,) = Conflicting(MH,) U

	

U

	

NoGood(MH,) .
l1H,EAr,s(.NH,)

We compute Conflicting, Ernaps, and NoGood sets as follows . First . Con-
flicting is computed for each match hypothesis, since it requires only local
information . Second . Emaps and NoGood are computed for each emap . Third .
Emaps and NoGood sets are computed for all other- match hypotheses by
propagating the results from Emaps upwards to their ancestors .

We make two observations about this computation . First, these operations
can be efficiently implemented via bit vectors. For example, SME assigns a
unique bit position to each match hypothesis, and carries out union and
intersection operations by using OR and AND bit operations . Second, it is
important to look for justification holes in the match hypothesis graph-match
hypotheses whose arguments fail to match . Such match hypotheses will always
violate the support constraint, and hence should be removed . For example, if
one of the PRESSURE-TEMPERATURE match hypotheses had not been formed
(see Fig . 4), then the match between their governing GREATER predicates
would be removed . Notice that removing justification holes eliminates many
blatantly incorrect matches, such as trying to place an eighth-order IMPLIES in
correspondence with a second-order IMPLIES .
The next step in gmap construction is to identify those match hypotheses

which are internally inconsistent, and thus cannot be part of any gmap . This
can happen when the descendants of a match hypothesis imply mutually
incompatible bindings .

Defintion 3 .4. A match hypothesis is inconsistent if the emaps entailed by one
subgraph of its descendants conflicts with the emaps entailed by another
subgraph of its descendants :

Inconsistent(MH;) p Emaps(MH;) n NoGood( MH;) $ 0 .

Clearly, every ancestor of an inconsistent match hypothesis is also inconsistent .

By caching the NoGood sets, inconsistent match hypotheses can be identified
easily .

Global match construction proceeds by collecting sets of consistent match

hypotheses. Since gmaps are defined to be maximal, we begin from roots and
work downward rather than starting bottom-up . If a root is consistent, then the
entire structure under it must be consistent . and thus forms an initial .gmap. If
the graph of match hypotheses had only a single consistent root, this step
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would suffice . However, typically there are several roots, and hence several
initial gmaps . To obtain true gmaps, that is . maximal collections of match
hypotheses, these initial gmaps must then be merged into larger, structurally
consistent collections .

Merge step 1 : Form initial combinations . The first step is to combine
interconnected and consistent structures (Fig . 6(a)) . Each consistent root, and
its descendants, forms an initial gmap . If a root is inconsistent, then the same
procedure is applied recursively to each descendant (i .e . . each immediate
descendant is now considered as a root) . The resulting set will be called
Gmaps, . The procedure is :

(1) Let Gmaps, = 0 .
(2) . For every root MH(b i , t)

(a) if -ilnconsistent(MH(b ;, ti )), then create a gmap GM such
that Elements(GM) = Reachable(MH(b, . t,)) ;

(b) if lnconsistent(MH(b i , t)), then recurse on Offspring
(MH(b,, t;)).

(3) For every GM E Gmaps,
(a) NoGood(GM) =

	

U

	

NoGood(MH(b,, td) ;
MH(b j .tj )ERoots(GM)

(b) Emaps(GM) =

	

U

	

Emaps(MH(b;., ti )) .
.NH(bj .tj )E Roots(GM )

In this step inconsistent match hypotheses have been completely eliminated .
However, we do not yet have true gmaps, since the sets of correspondences are
not maximal . To obtain maximality, elements of Gmaps, that are consistent

(a)

7 - MH betwan predieata
A - MH betweea enuua IEmap(

Fig. 6. Gmap construction. (a) Merge step 1 : Interconnected and consistent . (b) Merge step 2 :
Consistent members of the same base structure . (c) Merge step 3 : Any further consistent

combinations .

7

(b) (c)
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with one another must be merged . Consistency between two gmaps can be
defined as follows :

Consistent(GMap;, GMap,)
iff Elements(GMap,) n NoGood(GMap,) = 0

A NoGood(GMap;) n Elements(GMap,) = 0

Merge step 2 : Combine connected gmaps. Consider two elements of Gmnaps,
which share base structure . i .e . . whose roots in the base structure are identical .
Since we are assuming distinct elements, either (a) their correspondences are
structurally inconsistent or (b) there is some structure in the base which
connects them that does not appear in the target (if it did, match hypotheses
would have been created which would bring the two elements under a common
match hypothesis root; hence they would not be distinct) . Combining such
elements, when consistent, leads to potential support for candidate inferences .
We call the partial gmaps resulting from this merge Gmaps_ (Fig . 6(b)) .

Merge step 3 : Combine independent collections . Consider two elements of
Gmaps, which have no overlap between their relational correspondences .
Clearly, any such pair could be merged without inconsistency, if they sanction
consistent sets of emaps. This final step generates all consistent combinations
of gmaps from Gmaps, by successive unions, keeping only those combinations
that are maximal (Fig . 6(c)) .

Example (Simple analogy between heat and water) . Figure 6 shows how the
gmaps are formed from the collection of match hypotheses for the simple water
flow/heat flow example . After merge step 1, only isolated collections stemming
from common roots exist . Merge step 2 combines the PRESSURE to TEMPERA-
TURE mapping with the FLOW mapping, since they have common base
structure (i .e ., the base structure root is the CAUSE predication) . Finally,
merge step 3 combines the isolated water and coffee attributes (see Fig . 7) .
Notice that the FLOW mapping is structurally consistent with the DIAMETER to
TEMPERATURE mapping . However, because merge step 2 placed the FLOW

mapping into the same gmap as the PRESSURE to TEMPERATURE mapping,
merge step 3 was unable to combine the FLOW mapping with the DIAMETER to
TEMPERATURE gmap .

3.2 .3 . Compute candidate inferences (Step 3)

Each gmap represents a set of correspondences that can serve as an interpreta-
tion of the match. For new knowledge to be generated about the target, there
must be information from the base which can be carried over into the target .
Not just any information can be carried over-it must be consistent with the
substitutions imposed by the gmap, and it must be structurally grounded in the
gmap . By structural grounding, we mean that its subexpressions must at some
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Rule File : literal-similarity .rules

	

lumbar of !latch Hypotheses : 14

Match Hypotheses :

0

	

0

	

0
0

	

0

	

0

Global Mappings :

Gasp *I : (>PRESSURE 'TEMPERATURE) (PRESSURE-BEAKER TEMP-COFFEE)
(PRESSURE-VIAL TEMP-ICE-CUBE) (WFLOW HFLOW)

Esaps :

	

(beaker coffee) (vial ice-cube) (eater heat) (pipe bar)
Weight : 6 .99
Candidate Inferences : (CAUSE >TEMPERATURE HFLOW)

Gasp 82 : ('DIAMETER >TEMPERATURE) (DIAMETER-1 TEMP-COFFEE)
(DIAMETER-2 TEMP-ICE-CUBE)

taaps :

	

(beaker coffee) (vial ice-cube)
Weight : 3 .94
Candidate inferences :

Cup 83 : (LIQUID-3 LIQUID-6) (FLIT-TOP-4 FLAT-TOP-9)
Laps : (water coffee)
Wight : 2.44
Candidate Inferences :

B. FALKENHAINER ET AL .

Fig. 7. Complete SME interpretation of water flow/heat flow analogy .

point intersect the base information belonging to the gmap . Such structures
form the candidate inferences of a gmap .
To compute the candidate inferences for a gmap GM, SME begins by

examining each root BR in the base dgroup to see if it is an ancestor of any
match hypothesis roots in the gmap . If it is, then any elements in Descen-
dants(BR) which are not in Baseltems(GM) are included in the set of candidate
inferences .
The candidate inferences often include entities . Whenever possible, SME

replaces all occurrences of base entities with their corresponding target entities .
Sometimes, however, there will be base entities that have no corresponding
target entity ; i.e., the base entity is not part of any match hypothesis for that
gmap . What SME does depends on the type of entity . If the base entity is a
constant, such as zero, it can be brought directly into the target unchanged (a
flag is provided to turn on this behavior) . Otherwise . SME introduces a new,
hypothetical entity into the target which is represented as a skolem function of
the original base entity . Such entities are represented as ( :skolem base-entity) .

Recall that structure-mapping does not guarantee that any candidate infer-

(0 .6500 0 .0000) (>PRESSURE 'TEMP)
(0 .7120 0 .0000) (PRESS-BEAKER TEMP-COFFEE)
(0 .7120 0 .0000) (PRESS-VIAL TEMP-ICE-CUBE)
(0 .9316 0 .0000) (BEAKER-6 COFFEE-1)
(0 .6320 0 .0000) (PIPE-8 BAR-3)
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ence is valid. Each candidate inference is only a surmise, which must be tested
by other means . By theoretical assumption . general testing for validity and
relevance is the province of other modules which use SME's output .' However .
SME does provide a weak consistency check based on purely structural conside-
rations. In particular . i t discards a candidate inference when (a) the predicate is
noncommutative and (b) its argum.•.nts are simply a permuted version of the
arguments to another expression involving that predicate in the target domain .
For example . if (GREATER (MASS sun) (MASS planet)) existed in the target .
(GREATER (MASS planet) (MASS sun)) would be discarded as a candidate
inference .

Example (Simple analogy between heat and water) . In Fig . 7, gmap # 1 has the
top-level CAUSE predicate as its sole candidate inference . In other words, this
gmap suggests that the cause of the flow in the heat dgroup is the difference in
temperatures .

Suppose the FLOW predicate was missing in the target dgroup . Then the
candidate inferences for a gmap corresponding to the pressure inequality would
include expressions involving both CAUSE and FLOW, as well as conjectured
target entities corresponding to water (heat) and pipe (bar) . The two skolem-
ized entities would be required because the FLOW match provides the match
from water and pipe to heat and bar, respectively . Note also that GREATER-
THAN(DIAMETER(coffee), DIAMETER(ice-cube)) is not a valid candidate inference
for the first gmap because it does not intersect the existing gmap structure .

3.2.4 . Compute structural evaluation scores (Step 4)

Typically a particular base and target pair will give rise to several gmaps, each
representing a different interpretation . Selecting the "best" interpretation of
an analogy, as mentioned previously, can involve nonstructural criteria . How-
ever, as the psychological results indicated, evaluation includes an important
structural component . SME provides a programmable mechanism for computing
a structural evaluation score (SES) for each gmap . This score can be used to
rank-order the gmaps or as a factor in some external evaluation procedure .

The structural evaluation score is computed in two phases, each using match
evidence rules to assign and manage numerical scores . The first phase assigns
weights to individual match hypotheses, and the second phase computes a
score for each gmap by combining the evidence for the match hypotheses
comprising its correspondences . After a brief introduction to the evidence
processing mechanism, we describe each phase in turn .
The management of numerical evidence is performed by a belief maintenance

system (BMs) [161 . The BMS is much like a standard TMs, using Horn clauses as
justifications . However, the justifications are annotated with evidential

' One such module is described in [17 .20) .
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weights . so that "degrees of belief' may be propagated . A modified version of
Dempster-Shafer formalism is used for expressing and combining evidence .
Belief in a proposition is expressed by the pair (s(A), s(-A)), where s(A)
represents the current amount of support for A and s(-iA) is the current support
against A . A simplified form of Dempster's rule of combination [16, 39 .57.64]
allows combining evidence from multiple justifications . For example, given that
Belief(A) = (0.4, 0) and Belief(B) _ (0.6, 0), together with (IMPLIES A C)(0 e .0) and
(IMPLIES B C),, .,,, Dempster's rule provides a belief in C equal to (0 .728, 0.0) .
In addition to providing evidence combination, these justifications provide
useful explanations about the structural evaluation (see [16]) .

We note two points about the role of numerical evidence in SME:

(1) While we have found Dempster-Shafer, useful, our algorithms are
independent of its details, and should work with any reasonable formalism for
combining evidence .

(2) We use numerical evidence to provide a simple way to combine local
information concerning match quality . These weights have nothing to do with
any probabilistic or evidential information about the base or target per se .

Assigning local evidence
Each match hypothesis and gmap has an associated BMS node to record
evidential information . The match evidence rules can add evidence directly to a
match hypothesis based on its local properties or indirectly by installing
relationships between them. Syntactically, these rules are similar to the match
constructor rules. For example,

(assert! 'same-functor)
(rule (( :intem (MH ?b ?t)

:test (and (expression? ?b) (expression? ?t)
(eq (expression-functor ?b)

(expression-functor ?t)))))
(assert! (implies same-functor (MH ?b,?t) (0.5 .0.0))))

states that "if the base item and target item of a match hypothesis are
expressions with the same functors, then supply 0 .5 evidence in favor of the
match hypothesis." (The assertion of same-functor provides a global record for
explanatory purposes that this factor was considered in the structural evalua-
tion .) The complete set of evidence rules used in this paper are provided in
Appendix A .

The ability to install relationships between match hypotheses allows a
simple, local implementation of the systematicity constraint. Recall that the
systematicity constraint calls for preferring expressions involving higher-order
relationships belonging to a systematic structure over isolated relationships . We
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implement this preference by passing evidence from a match involving a
relationship to the matches involving its arguments . The following rule accom-
plishes this . propagating 80% of a match hypothesis' belief to its offspring :

(rule (( :intern (MH ?bl ?t1))
(:intern (MH ?b2 ?t2) :test (children-of? ?b2 ?t2 ?b1 V)))

(assert! (implies (MH ?bt ?t1) (MH ?b2 ?t2) (0 .8 . 0 .0))))

The more matched structure that exists above a given match hypothesis, the
more that hypothesis will be believed . The effect cascades, so that entity
mappings involved in a large systematic structure receive much higher scores
than those which are not. Thus this "trickle down" effect provides a local
encoding of the systematicity principle .

Computing the structural evaluation score
The structural evaluation score for a gmap is simply the sum of the evidence of
its match hypotheses . This simplistic summation rule has sufficed for most of
the examples encountered so far . There are a number of other factors that are
potentially relevant as well, which we discuss in Section 7 .3.1 . In order to
provide maximum flexibility, evidence rules are used to compute the evidence
of gmaps as well .

Originally we combined evidence for gmaps according to Dempster's rule, so
that the sum of beliefs for all the gmaps equaled 1 [21] . We discovered two
problems with this scheme . First. Demster's rule is susceptible to roundoff .
which caused stability problems when a large number of match hypotheses
supported a gmap. Second, normalizing gmap evidence prevents us from
comparing matches using different base domains (as needed for access experi-
ments, see Section 4.4), since the score would be a function of the other gmaps
for a particular base and target pair .

Example (Simple analogy between heat and water) . Returning to Fig. 7 . note
that the best interpretation (i .e . . the one which has the highest structural
evaluation score) is the one we would intuitively expect . In this interpretation .
beaker maps to coffee, vial maps to ice-cube, water maps to heat, pipe maps to bar .
and PRESSURE maps to TEMPERATURE . Furthermore, we have the candidate
inference that the temperature difference is what causes the flow of heat .

3.3. Complexity analysis

Here we analyze the complexity of the SME algorithm . Because it depends
critically on both the input descriptions and the match rules, strict bounds are
hard to determine . However . we give both best- and worst-case analyses for
each step, and provide estimates of typical performance based on our ex-
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1 . Run MHC rules to construct match hypotheses .
2. Calculate the Conflicting set for each match hypothesis .
3. Calculate the EMaps and NoGood sets for each match hypothesis by upward propagation from

entity mappings .
4 . Merge match hypotheses into gmaps .

(a) Interconnected and consistent .
(b) Consistent members of same base structure .
(c) Any further consistent combinations .

5. Calculate the candidate inferences for each gmap .
6. Score the matches

(a) Local match scores .
(b) Global structural evaluation scores .

Fig. 8 . Summary of SME algorithm .

perience. The decomposition used in the analysis is shown in Fig . 8. We use the
following notation in the analysis:

Wb
= number of entities in the base dgroup,

i6t = number of entities in the target dgroup,
S;b -number of expressions in the base dgroup .

,9, a number of expressions in the target dgroup,

Al a number of match hypotheses,
19 -number of gmaps,
Nb =Wb + 4'b ,

	

Nt s9,+At ,

	

Nw (Nb +N,) .

3 .3 .1 . Analysis of Step 1 : Local match construction

SME does not restrict either the number of match rules or their complexity .
There is nothing to prevent one from writing a rule that examines extensive
information from external sources (e .g., a knowledge base, plans, goals, etc .) .
However, the rule sets which implement the comparisons of structure-mapping
theory consist of only a few simple rules each . This reduction of computational
complexity is one of the advantages of the structure-mapping account, since it
restricts the tests performed in rules to local properties of the representation .
Consequently, we assume rule execution takes unit time, and focus on the total
number of rules executed . The :filter rules are run for each pair of base and
target predicates . Consequently, they will always require O(N,, - N,). Each
antem rule is run once on every match hypothesis . In the worst case, X =
Nh - N,, or roughly N2. But in practice, the actual number of match hypotheses
is substantially less, usually on the order of cN, where c is less than 5 and N is
the average of Nb and N, . Thus, in practice, Intern rules have a run time of
approximately O(N).
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3 .3 .2 . Analysis of Step 2: Calculating Conflicting
Recall that SME assigns a Conflicting set to each match hypothesis, MH(b,, t.) .
which represents the alternate mappings for b, and t, . The conflicting sets are
calculated -by examining each base and target item to gather the match
hypotheses which mention them . Let 'g be the average number of alternative
matches each item in the base and target appears in . SME loops through the '
match hypotheses twice: once to form the bitwise union of these match
hypotheses and once to update each hypothesis' Conflicting set. Thus, the
entire number of bit vector operations is

(3`b-2`g)+(9t,-216)+(x,-2'8)+ (W t -2C) .

The worst case is when a match hypothesis is created between every base
and target item . If we also assume Nb = N,, then Ce = N, in that case . The
number of operations becomes 4N; or approximately O(N). Conversely, the
best-case performance occurs when C is 1, producing O(max(N b , N,)) oper-
ations . In our experiments so far, we find that Ce is typically quite small, and so
far has always been less than 10. Consequently, the typical performance lies
between O(N) and O(N 2 ) .

3.3.3 . Analysis of Step 3 : Emaps and NoGood calculation

Recall that once the Conflicting sets are calculated, the Emaps and NoGood
sets are propagated upwards from the entity mappings through the match
hypotheses . By caching which MH(b;, t,)'s correspond to emaps ' and using a
queue, we only operate on each node once . Hence the worst- and best-case
performance of this operation is O(A), which in the worst case is O(N 2 ) .

3 .3 .4 . Analysis of Step 4: Gmap construction

Global matches are formed in three steps. The first step collects all of the
consistent connected components of match hypotheses by starting at the match
hypothesis roots, walking downwards to find consistent structures . Each graph
walk takes at most O(N;), where N; is the number of nodes Reachable from the
current match hypothesis root. If there are NR roots, then the first merge step
(Step 4(a)) takes O(NR • N;) . Assuming that most of the match hypotheses will
appear in only one or two subgraphs (some roots may share substructure) . we
can approximate this by saying that the first merge step is 0(,M) . Call the
number of partial gmaps formed at this stage '&P , .

Perhaps surprisingly, the complexity of the previous steps has been uniform-
ly low. Sophisticated matching computations usually have much worse perfor-
mance, and SME cannot completely escape this . In particular . the worst case for
Steps 4(b) and 4(c) is O(N!) (although worst case for one implies best case for
the other) .
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Step 4(b) combines partial gmaps from Step 4(a) that intersect the same base
structure . This requires looping through each base description root to find
which partial gmaps intersect it, and then generating every consistent, maximal
combination of them . In the worst case, every gmap could intersect the same
base structure . This would mean generating all possible consistent, maximal
sets of gmaps, which is equivalent to Step 4(c) . so we defer this part of the
analysis until then . In the other extreme, none of the gmaps . share a common
base structure, and so Step 4(b) requires 0( 19 : 1 ) operations, although this is
not the best-case performance (see below) . Typically, the second merge step is
very quick and displays near best-case performance .

Step 4(c) completes gmap construction by generating all consistent combina-
tions of the partial gmaps, discarding those which are not maximal . The
complexity of this final merge step is directly related to the degree of structure
in the base and target domains and how many different predicates are in use .
Worst-case performance occurs when the description language is flat (i .e . . no
higher-order structure) and the same predicate occurs many times in both the
base and the target . Consider a language with a single, unary predicate, and
base and target dgroups each consisting of N distinct expressions . In ' this case
every base expression can match with every target expression, and each such
match will suggest matching in turn the entities that serve as their arguments .
This reduces to the problem of finding all isomorphic mappings between two
equal size sets, which is O(N!) .

Now let us consider the best case . If the base and target dgroups give rise to
a match hypothesis graph that has but one root, and that root is consistent,
then there is only one gmap! The second and third merge steps in this case are
now independent of N, i.e., constant-time .
Of course, the typical case is somewhere between these two extremes .

Typically the vocabulary of predicates is large . and the relationships between
entities diverse . Structure provides a strong restriction on the number of
possible interpretations for an analogy . By the time SME gets to Step 4, many
of the match hypotheses have been filtered out as being structurally impossible .
Steps 4(a) and 4(b) have already merged many partial gmaps, reducing the
number of elements which may be combined . The identicality constraint of
structure-mapping (encoded in the match rules) also reduces typical-case
complexity, since match hypotheses are only created between relations when
functors are identical . Thus, SME will perform badly on large descriptions with
no structure and extensive predicate repetition, but will perform well on large
descriptions with deep networks of diverse higher-order relationships . Semanti-
cally, the former case roughly corresponds to a jumble of unconnected
expressions, and the latter case to a complex argument or theory . The better
organized and justified the knowledge, the better SME will perform .

While the potential complexity of Step 4(b) is O(N!), our experience is that
this step is very quick and displays near best-case performance in practice . We
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suspect the worst-case behavior is very unlikely to occur, since it requires that
all members of Gmaps, intersect the same base structure and so must be
merged in all possible ways . However . partial gmaps intersecting the same base
structure are almost always consistent with one another, meaning that Step 2
would usually merge Gmaps, into one gmap in O(IgP,) time . On the other
hand, we have on occasion experienced worst-case performance for Step 4(c) .

3 .3 .5 . Analysis of Step 5 : Finding candidate inferences

The candidate inferences are gathered by looping through the base description
roots for each gmap, collecting missing base expressions whenever their
structure intersects a match hypothesis in the gmap . Each expression is tested
to ensure that (1) it is not already matched with part of the target description,
and (2) that it does not represent a syntactic contradiction of an existing target
expression . The size of the typical candidate inference is inversely related to
the percentage of base structure roots: more roots implies less structure to
infer, and vice versa . Thus in the worst case we have O(19- ;Fb ' 3;,), or roughly
O(N; ) . However, this is an extreme worst case . First, the 3;, term implies that
we check every target expression on each iteration . The algorithm actually only
checks the pertinent target expressions (i.e ., those with the same predicate),
giving a tighter bound of O(N ) . In the best case, there will only be one gmap
and no candidate inferences, producing constant-time behavior .

3.3 .6 . Analysis of Step 6 : SES computation

The complexity of the BMS is difficult to ascertain . Fortunately it is irrelevant to
our analysis since the BMS can be eliminated if detailed justification of
evidential results are not required. For example, the first version of SME (211
used specialized evidence rules which had most of the flexibility of the
BMS-based rules yet ran in O(.,R) time.

Although the flexibility of the BMS can be valuable, in fact the majority of
SME'S processing time takes place within it-typically 70 to 80% . So far this has
not been a serious performance limitation, since on the examples in this paper
(and most of the examples we have examined) . SME takes only a few seconds
on a Symbolics machine .

4. Examples

The structure-mapping engine has been applied to a variety of domains and
tasks . It is being used in psychological studies, comparing human responses
with those of SME for both short stones and metaphors . SME is serving as a
module in a machine learning program called PHINEAS, which uses analogy to
discover and refine qualitative models of physical processes such as water flow
and heat flow . SME is also used in a concept-learning program called SEOL .
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which induces structural descriptions from examples (66, 68] . Here we discuss a
few representative examples to demonstrate SME's flexibility and generality .

4.1 . Methodological constraints

Flexibility is a two-edged sword . The danger in using a program like SME is that
one could imagine tailoring the match construction and evidence rules for each
new example . Little would be learned by using the program in this way-we
would have at best a series of "wind-up toys," a collection of ad hoc programs
which shed little theoretical light . Here we describe * our techniques for
reducing tailorability .

First, all the cognitive simulation experiments were run with a fixed collec-
tion of rule sets, listed in Appendix A . Each rule set represents a particular
type of comparison sanctioned by the structure-mapping theory (i .e ., analogy,
literal similarity, and mere appearance) . The mere-appearance rules (MA)
match only low-order items : attributes and first-order relations . The analogy
rules (AN) match systems of relations and higher-order relations, while the
literal similarity rules (LS) match both low-order and higher-order structure .
The first two examples in this section use the AN rules, and the third uses both
AN and MA rules, as indicated .

While the choice of match construction rules is dictated by structure-
mapping, the particular values of evidence weights are not . Although we have
not performed a sensitivity analysis, in our preliminary explorations it appears
that the gmap rankings are not overly sensitive to the particular values of
evidence weights . (Recall that which gmaps are constructed is independent of
the weights, and is determined only by the construction rules and structural
consistency .)

Second, we have accumulated a standard description vocabulary which is
used in all experiments . This is particularly important when encoding natural
language stories, where the translation into a formal representation is under-
constrained . By accumulating representation choices across stories, we attempt
to free ourselves from biasing the description for particular examples .

Third . we have tested SME with descriptions generated automatically by
other Al programs . A representation developed to perform useful inferences
has fewer arbitrary choices than a representation developed specifically for
learning research. So far, we have used descriptions generated by two different
qualitative simulation programs with encouraging results . For example . WE
actually performs better (in the sense of producing fewer spurious interpreta-
tions) on a water flow/heat flow comparison using more complex descriptions
generated by GIZMO [241 than it does on many hand-generated descriptions .
We are working on interfacing SME to other inference systems, as described in
Section 7 .3.1 .
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4.2. Solar system/ Rutherford atom analogy

The Rutherford model of the hydrogen atom was a classic use of analogy in
science . The hydrogen atom was explained in terms. of the better understood
behavior of the solar system . We illustrate SME's operation on this example
with a simplified representation, shown in Fig . 9 .
SME constructed three possible interpretations . The highest-ranked mapping

(SES = 6.03) pairs the nucleus with the sun and the planet with the electron .
This mapping is based on the mass inequality in the solar system playing the
same role as the mass inequality in the atom . It sanctions the inference that the
differences in masses, together with the mutual attraction of the nucleus and
the electron, causes the electron to revolve around the nucleus. This is the
standard interpretation of this analogy .

The other major gmap (SES = 4.04) has the same entity correspondences . but
maps the temperature difference between the sun and the planets onto the
mass difference between the nucleus and the electron . The SES for this gmap is
low for two reasons. First, temperature and mass are different functions, and
hence they receive less local evidence . The second, and more important reason
is that there is no mappable systematic structure associated with temperature in
the base dgroup . Thus other relations, such as the match for ATTRACTS, do
not enter into this gmap. We could in theory know a lot more about the
thermal properties of the solar system than its dynamics, yet unless there is
some relational group in the target description there will not be a set of
mappable systematic relations . (If we instead were explaining a home heating
system in terms of the solar system the situation would be the reverse .)

The third gmap is a spurious collection of match hypotheses which imply that
the mass of the sun should correspond to the mass of the electron, and the
mass of the planet should correspond to the mass of the nucleus . There is even
less structural support for this interpretation (SES = 1 .87) .
This example demonstrates an important aspect of the structure-mapping

SOUR SYSTEM
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REVOLVE(Manet .sun)

GRAVITY ATTRACTS(sun.plmat) GREATER
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TEMPERATURE(vin) TEMPERATURErn4anal)

RUTHERFORD ATOM
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1- -1
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/ 1

MASS(nudaus) MASS(elsctron)

Fig. 9. Solar system/ Rutherford atom analogy .
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account of analogy . The interpretation preferred on structural grounds is also
the one with the most inferential import . This is not an accident ; the sys-
tematicity principle captures the structural features of well-supported argu-
ments. Using the structure-mapping analogy rules (AN), SME prefers interpreta-
tions based on a deep theory (i .e ., a subset of'a dgroup containing a system of
higher-order relations) to those based on shallow associations (i .e ., a subset of
a dgroup 'containing an assortment of miscellaneous facts) .

4.3. Discovering heat flow

The PHINEAS program [17, 18, 20] learns by observation. When presented with
a new behavior, it attempts to explain it in terms of its theories of the world .
These theories are expressed as qualitative models of physical processes using
Forbus' qualitative process theory [22, 23] . When it is given a behavior that it
cannot explain, an analogical learning module is invoked which attempts to
generate a new or revised model that can account for the new observation .
This module uses SME in two ways.5 First SME is used to form a match between
a previous experience which has been explained and the current behavior .
These correspondences provide the foundation for constructing a model that
can explain the new observation based on the model for the previous behavior .

For example, suppose that the program was presented with measurements of
the heat flow situation depicted in Fig . 10 and described in Fig . 11 . If the
domain model does not include a theory of heat flow, PHINEAS will be unable
to interpret the new observation 6 Using SME, PHINEAS constructs an analogy
with the previously encountered water flow experience also shown in Figs . 10
and 11 . This match establishes that certain properties from the two situations
behave in the same way. As shown in Fig . 11, the roles of the beaker and the
vial in the water flow history are found to correspond to the roles of the horse
shoe and water in the heat flow history, respectively . PHINEAS stores the

Fig. 10. Two examples of water flow and heat flow .

` In this example PHINEAS is using the structure-mapping analogy rules . In normal operation . it
uses a more knowledge-intensive rule set that relaxes the identicality constraint and includes
goal-sensitive match evaluation criteria (201 .

'' PIIINEAS uses the ATMI theory of measurement interpretation to explain observations. See

1251 for details .
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(Greater (Pressure (At beaker S0))
(Pressure (At vial SO)))

(Situation Si) (Situation St)
(Meets SO S1) (Meets 50 St)
(Constant (Pressure (At beaker S1)))

	

(Constant (Temp (At horse-shoe S1)) •)
(Constant (Pressure (At vial S1)))

	

(Constant (Temp (At eater S1)))
(Constant (Amount-of (At beaker S1)))

	

(Equal-To (Temp (At horse-shoe SI))
(Constant (Amount-of (At vial SI)))

	

(Temp (At water S1)))
(Equal-To (Pressure (At beaker S1))

(Pressure (At vial S1)))

(Function-Of (Pressure 'x)

	

(Function-Of (Temp 'x)
(Amount-of 'x))

	

(Heat 'x))

Behavioral Correspondences

Pressure
Amount-of

so
31

beaker
vial

Temperature
Host
so
51
horse-shoe
water

Fig. 11. Analogical match between water flow history and heat flow history .

correspondences that provide a mapping between entities or between their
quantities (e .g., Pressure and Temperature) for later reference .

When it is satisfied that the chosen water flow history is sufficiently analog-
ous to the current situation, PHINEAS begins a deeper analysis of the analogy .
It fetches the domain used to generate its prior understanding of the base
(water flow) experience . Its description of water flow, shown in Fig . 12, is a
straightforward qualitative model similar to that used in other projects [24 .27J .
This model states that if we have an aligned fluid path between the beaker and
the vial (i .e ., the path either has no valves or if it does, they are all open) . and
the pressure in the beaker is greater than the pressure in the vial, then a liquid
flow process will be active . This process has a flow rate which is proportional to
the difference between the two pressures . The flow rate has a positive influence
on the amount of water in the vial and a negative influence on the amount of
water in the beaker .

Using SME a second time, this theory is matched to the current heat flow
situation using the correspondences established with the behavioral analogy .
The output is shown in Fig . 13. The entity and function correspondences

33

Water-Flow History Heat-Flow History

(Situation SO) (Situation SO)
(Decreasing (Pressure (At beaker SO))) (Decreasing (Temp (At horse-shoe SO)))
(Increasing (Pressure (At vial SO))) (Increasing (Temp (At water SO)))
(Decreasing (Amount-of (At beaker SO))) (Greater (Temp (At horse-shoe SO))
(Increasing (Amount-of (At vial SO))) (Temp (At water SO)))
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Fig . 12 . Qualitative process theory model of liquid flow .

provided by the behavioral analogy provide significant constraint for carrying
over the explanation . SME's rule-based architecture is critical to this operation :
PHINEAS imposes these constraints by using a special set of match constructor
rules that only allow hypotheses consistent with the specific entity and function
correspondences previously established . Entities and functions left without a
match after the accessing stage are still allowed to match other unmatched
entities and functions . For example, the rule

(MHC-rule ( :filter ?b ?t
:test (sanctioned-pairing? (expression-functor ?b)

(expression-functor ?t)))

(install-MH ?b ?t))

forces a match between those quantities which were found to be analogous in
the behavioral analogy (e.g., PRESSURE and . TEMPERATURE) and prevents

Fig. 13. At. analogically inferred model of heat flow .
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± ,

	

Destination

6aap $I : ( ( AMOUNT-OF-35 HEAT-WATER) (AMOUNT-OF-33 HEAT-HSHOE)
(PRESSURE-DEARER TEMP-HSHOI) (PRESSURE-VIAL TEMP-WATER) }

Rasps : ( (Maker hers.-shoo) (vial vat.r) }
Weight : 2 .675
Candidat. Inferences : (IMPLIES

(AHD (ALIGNED ( :skol.a pip.))
(GREATER-TEAS (A TEMP-RSHOE) (A TEMP-WATER)))

(AND (Q• (FLOW-RATE pi) (- TEMMHSHOE TEMP-WATER))
(GREATER-THAN (A (FLOW-RATE pi)) s.ro)
(I • HEAT-WATER (A (FLOW-RATE pi)))
(I- HEAT-HSHOR (A (FLOW-RATE pi)))))
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any alternate matches for these quantities (e .g ., AMOUNT-OF and TEM-
PERATURE) .

This example demonstrates several points . First, the second analogy, which
imports the theoretical explanation of the new phenomena, is composed almost
entirely of candidate inferences, since the system had no prior model of heat
flow. It is largely a carryover analogy [31] . Hence, the model was constructed
by analogy rather than augmented by analogy . This shows the power of SME's
candidate inference mechanism . Second, -the example illustrates how SME's
rule-based architecture can support tasks in which the entity correspondences
are given prior to the match, rather than derived as . a result of the match .
Finally, it shows the utility of introducing skolemized entities into the candi-
date inferences . The results produced by SME (Fig . 13) contain the entity
( :skolem pipe) . This indicates that, at the moment, the heat path is a conjec-
tured entity. At this time, the system inspects its knowledge of paths to infer
that immersion or physical contact is a likely heat path . However, we note that
much knowledge gathering and refinement may still take place while leaving
the heat path as a conjectured entity . For example, in the history of science
ether was postualted to provide a medium for the flow of light waves because
other kinds of waves require a medium .

4.4. Modeling human analogical processing

SME is being used in several cognitive simulation studies. Our goal is to
compare SME's responses with those of humans for a variety of tasks and
problems. For example, two psychological studies [35, 59] have explored the
variables that determine the accessibility of a similarity match and the inferen-
tial soundness of a match. Structure-mapping predicts that soundness is de-
termined by the degree of systematic relational overlap [30] . In contrast,
Gentner [31, 321 has suggested that the accessibility of potential matches in
long-term memory is heavily influenced by surface similarity . Psychological
studies have supported both hypotheses [35, 59, 62] . In order to verify the
computational assumptions we ran SME on the same examples that had been
given to human subjects . Here we briefly summarize the simulation methodolo-
gy and the results; for details see [67] .

The hypotheses were tested psychologically as follows . Pairs of short stories
were constructed which were similar in different ways : in particular, some pairs
embodied mere appearance and some analogy .' Subjects read a large set of
stories, which were the base members of each pair . Then, in a second session,
subjects saw the similar stories and tried to retrieve the original stories (the
access measure) . After that, the subjects were then asked to judge the
inferential soundness of each of the story pairs . For the cognitive simulation

Other kinds of matches . including literal similarity, were also used. Here we discuss only

analogy and mere appearance .



36

	

B. FALKENHAINER ET AL .

study. five triads of stories-a base, a mere-appearance match, and an analogy
match were encoded (15 in all) . The pairs of stories were presented to SMtE,

using different rule sets corresponding to analogy (the AN rules) and mere
appearance (the MA rules) . The results from the AN rules were used to estimate
soundness, while the results from the MA rules were used to estimate acces-
sibility . One of these story groups will be discussed in detail . showing how SMME

was used to simulate a test subject .
In the story set shown in Fig . 14, the original story concerned a hawk named

Karla who survives an attack by a hunter. Two target stories were used as
potential analogies for the Karla narration . One was designed to be truly
analogous (TA5) and described a small country named Zerdia that survives an
attack by another country . The other story (MA5) was designed to be only
superficially similar and described an eagle named Zerdia who is killed by a
sportsman. The representation of the Karla story given to SME was :

(CAUSE (EQUALS (HAPPINESS HUNTER) HIGH)

(PROMISE HUNTER KARLA (NOT (ATTACK HUNTER KARLA))))

(CAUSE (OBTAIN HUNTER FEATHERS) (EQUALS (HAPPINESS HUNTER) HIGH))

(CAUSE (OFFER KARLA FEATHERS HUNTER) (OBTAIN HUNTER FEATHERS))

(CAUSE (REALIZE KARLA (DESIRE HUNTER FEATHERS))

(OFFER KARLA FEATHERS HUNTER))

Base Story
Karla, an old hawk, lived at the top of a tall oak tree . One afternoon, she saw a hunter on the
ground with a bow and some crude arrows that had no feathers . The hunter took aim and shot at

the hawk but missed . Karla knew that hunter wanted her feathers so she glided down to the hunter
and offered to give him a few. The hunter was so grateful that he pledged never to shoot at a

hawk again . He went off and shot deer instead .

Target Story: Analogy
Once there was a small country called Zerdia that learned to make the world's smartest computer .

One day Zerdia was attacked by its warlike neighbor, Gagrach. But the missiles were badly

aimed and the attack failed. The Zerdian government realized that Gagrach wanted Zerdian

computers so it offered to sell some of its computers to the country. The government of Gagrach

was very pleased. It promised never to attack Zerdia again.

Target Story: More Appearance
Once there was an eagle named Zerdia who donated a few of her taifeathers to a sportsman so
he would promise never to attack eagles .

One day Zerdia was nesting high on a rocky cliff when she saw the sportsman ox,*g with a

crossbow. Zerdia flew down to meet the man, but he attacked and felled her with a single bolt . As

she fluttered to the ground Zerdia realized that the bolt had her own tailfeathers on it .

Fig. 14. Story set 5 .
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(FOLLOW (EQUALS (SUCCESS (ATTACK HUNTER KARLA)) FAILED)
(REALIZE KARLA (DESIRE HUNTER FEATHERS)))

(CAUSE (NOT (USED-FOR FEATHERS CROSS-BOW))
(EQUALS (SUCCESS (ATTACK HUNTER KARLA)) FAILED))

(FOLLOW (SEE KARLA HUNTER) ATTACK HUNTER KARLA))
(WEAPON CROSS-BOW)
(KARLAS-ASSET FEATHERS)
(WARLIKE HUNTER)
(PERSON HUNTER)
(BIRD KARLA)

The results from human subjects showed that (1) in the soundness evaluation
task, as predicted by Gentner's systematicity principle, people judged analogies
as more sound than mere-appearance matches ; and (2) in the memory access
task, people were more likely to retrieve surface similarity matches than
analogical matches .

To test SME as a cognitive simulation of how people determine the soundness
of an analogy, SME was run using its analogy (AN) match rules on each
base-target pair of stories-that is, base/ mere-appearance story and base/
analogical story . Figure 15 shows the output of SME for the AN task . For

Analogical Match from Karla to Zerdia the country (TAS) .
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Analogical Match from liana to Zerdia the eagle (M45) .
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Fig. 15. SME's analysis of story set 5 . using the TA rules .
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example. "Zerdia the country" (the analogy) was found to be a better
analogical match (SES = 22 .4) to the original Karla story than "Zerdia the
eagle" (SES = 16.8) . Overall, SME as an analogical mapping engine agrees quite
well with the soundness rating of human subjects .

We also used SME to test the claim that the human access patterns result
from access depending on surface similarity matches (objects and object-
attribute overlap) . SME was run on each of the pairs using its mere-appearance
(MA) match rules . This measured their degree of superficial overlap . Again .
over the five stories SME's rankings match those of human subjects . For
example, the output of SME for the MA task is given in Fig. 16, which shows
that the eagle story (SES = 7.7) has a higher MA rating than the country story
(SES = 6.4) .
It should be noted that, unlike the soundness rating task, the access

mimicking task is not a true simulation . To do this would require finding and
selecting the prior story from a large set of potential matches . Rather, SME is
acting as a bookkeeper to count the variable (here, degree of surface overlap)
being claimed as causally related to the variable being measured (accessibility
of matches) . The results demonstrate that surface similarity, as strictly defined
and used in SME's match rules, matches well with people's retrieval patterns in
an access task. In contrast, in the soundness rating simulation, SME's analogy
processes constitute a psychologically viable model .

This study illustrates the viability of SME as a cognitive simulation of human
processing of analogy . We make two additional observations . First, the results
demonstrate the considerable leverage for cognitive modeling that SME's

Analogical Match from Kola to Zerdia the country (TAS) .
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Fig. 16. SME's analysis of story set 5 . using the MA rules .
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architecture provides . We know of no other general-purpose matcher which
successfully models two distinct kinds of human similarity comparisons . Sec-
ond, the short story analogies show that SME is capable of matching large
structures as well as the smaller . simpler structures shown previously .

4.5 . Testing structure-mapping constraints

While structural consistency is built into the SME algorithm . the other con-
straints of structure-mapping are not . This allows us to- emulate a space of
matchers and explore extensions and variations of structure-mapping . It also
provides a means to determine just how much work the various theoretical
constraints contribute, by modifying or deleting the rules which implement
them . Recall that identicality is implemented by the match constructor rules,
and systematicity is implemented by match evidence rules . We could determine
how much work identicality does . say, by changing the rules to allow arbitrary
predicates to match .

We constructed the free-for-all (FFA) rule set to explore just that question .
The FFA rule set builds a match hypothesis for every pair of predicates and
every pair of entities, regardless of identity, type, or number of arguments .
The only constraint still enforced is commutativity-the current implementa-
tion will not allow a commutative predicate to match a noncommutative one .
Every match hypothesis receives an initial score of 0 .2. Gmap selection is
based strictly on systematicity . This rule set has been successfully tested on
several graph isomorphisms taken from [541, as well as a few hand-crafted
examples .

It is interesting to examine SSIE's performance with the FFA rules on the
simple water flow/heat flow example of Fig . 2 . SME constructed 74 match
hypotheses, which were combined into 26 gmaps . Four gmaps were tied for the
highest ranking (SES = 3.71) . Two of these gmaps were supersets of the
standard interpretation (i.e., Gmap #I, where PRESSURE maps to TEMPERA-

TURE, as shown in Fig. 7) . The new correspondences involved attributes of the
beaker-coffee pair . In one gmap. (DIAMETER beaker) was mapped to (LIQUID
coffee) and (CLEAR beaker) was mapped to (FLAT-TOP coffee) . and the other
reversed these attribute mappings . The other two gmaps were supersets of
Gmap #2 from Fig. 7 . which paired the diameter inequality from the water
flow base domain to the temperature inequality in the heat flow target domain .
The new correspondences in these gmaps included matches from (PRESSURE
beaker) and (CLEAR beaker) to (LIQUID coffee) and (FLAT-TOP coffee) .

Our experiments with the FFA rules suggest two conclusions. First, while
structural consistency is a powerful guide to matching, it is not by itself
sufficient to constrain a matcher . In our simple heat/water analogy, for
example, the number of match hypotheses increased by a factor of 5 and the
gmaps increased by a factor of 3 . Larger examples will provide even worse



40

H

I

I

Z a>Kv

.Y
eY

I

.?

K
W

	t

N 'H 'D 'O le 'C

: h-.
N N N N CIO

... - ~ - N Ny N N -

sw Ew
.~ ^

	

< <
<~<1~

w E~~ to h ..
Hya<<<u
wcutn,~r,~,

E = 51

	

: a R
y ~o+.m nn3

B. FALKENHAINER ET AL .

sv
E

F

C_
C

2

s
- v

rt X ^ ` Z ^ T r

n ,
v

m
C0E=

E
V

-

f+1 e+: .C N
C
r
y

wOC
E
d
E
CJ

H
Z



THE STRUCTURE-MAPPING ENGINE

	

41

combinatorial explosions . Second, the identicality constraint plays an im-
portant role by assuring that the structures being compared are semantically
similar. Without it, a matcher can generate many spurious inferences which
must then be filtered by external systems. For example . the FFA rules led SME
to propose the candidate inference (GREATER (LIQUID coffee) (DIAMETER
ice-cube)), which is clearly nonsense . This does not mean that only a constraint
as strong as identicality can play this role, of course . We describe some
alternatives being explored in Section 7 .1 .

5. Performance Evaluation

SME is written in COMMON LISP. The examples in this paper were run on a
Symbolics 3640 with 8 megabytes of RAM . Table 1 shows SME's performance
for each example in this paper . All run times are in seconds. We have
separated the BMS run time from the total run time to give a more accurate
account of SME's speed, since the computational cost of the BMS can be
removed if necessary . This data indicates that SME is extremely fast at
producing unevaluated gmaps . In fact, it seems to be close to linear in the
number of match hypotheses and in the number of base and target expressions .
The majority of the run time is spent within the BMS, producing structural
evaluation scores. However, the total run times are short enough that we have
opted to continue using the BMS for now, since it has proven to be a valuable
analysis tool .

The longest runtime occurred for the behavioral match between the water
flow and heat flow observations (PHINEAS behavioral). While the descriptions
for this example were the largest, the primary source of slowdown was the flat
representations used to describe the situations .

6. Comparison with Other Work

The structure-mapping theory has received a greater deal of convergent
theoretical support in artificial intelligence and psychology . Although there are
differences in emphasis, there is now widespread agreement on the basic
elements of one-to-one mapping of objects with carryover of predicates ([5, 6,
41 . 44, 49, 50, 61, 63, 71, 78, 791) . Moreover, several of these researchers have
used selection constraints that are specializations of the systematicity principle .
For example, Carbonell focuses on plans and goals as the high-order relations
that give constraint to a system . while Winston focuses on causality . Structure-
mapping theory is more general in three respects . First, it defines mapping
rules which are independent of particular domains or primitives . Second, the
structure-mapping characterization applies across a range of applications of
analogy, including problem solving, understanding explanations, etc . Third,
the structure-mapping account treats analogy as one of a family of similarity
comparisons, each with particular psychological privileges, and thus explains
more phenomena .
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A limitation of structure-mapping is that the mapping process (as opposed to
access or evaluation, see Section 2 .1) ignores all nonstructural factors . Some
models have combined an explicit structure-mapping component to generate
potential interpretations of a given analogy with a pragmatic component to
select and refine the relevant interpretation (e .g . . [5 . 20 . 50]) . Given our
experience with PHINEAS, we believe SME will prove to be a useful tool for such
systems .

A very different approach is taken by Holyoak [47) . In this account . there is
no separate stage of structural matching . Instead, analogy is completely driven
by the goals of the current problem-solving context . Retrieval of the base
domain is driven by an abstract scheme of current problem-solving goals .
Creating the mapping is interleaved with other problem-solving activities . This
"pragmatic account, while appealing in some ways, has several crucial
limitations [31 . 321. First . the pragmatic model has no account of soundness in
terms of systematicity . Without structural consistency, the search space for
matching explodes (see below) . Second, the pragmatic account can only be
defined in problem-solving contexts . Yet analogy is used for purposes other
than problem solving, including many contexts in which relevance does not
apply . Analogy can be used to explain a new concept and to focus attention on
a particular aspect of a situation . Analogy can result in noticing commonalties
and conclusions that are totally irrelevant to the purpose at hand . Thus an
analogy interpretation algorithm that 'requires relevance cannot be a general
solution [31, 32] . Third, psychological data indicates that access is driven by
surface similarity, not relevance, as described previously .

We believe the modularity imposed by the structure-mapping account has
several desirable features over the pragmatic account . In the structure-mapping
account, the same match procedure is used for all applications of analogy . For
example, in a problem-solving environment. current plans and goals influence
what is accessed . Once base and target are both present, the analogy mapping
is performed, independently of the particular context . Its results can then be
examined and tested as part of the problem-solving process (see [31, 32]) .
SME demonstrates that an independent, structural matcher can be built which

is useful in several tasks and for a variety of examples (over 40 at this writing) .
By contrast, no clear algorithms have been presented based on the pragmatic
account, and published accounts so far [46] describe only two running exam-
ples . Another issue is that of potential complexity . The "typical-case" bounds
we have been able to derive so far are not very precise, and a more complete
complexity analysis would certainly be desirable . However, the analysis so far
indicates reasonable typical-case performance (roughly, O(N')), and the em-
pirical results bear this out. Our excellent performance arises from the fact that
SME focuses on local properties of the representation . On the other hand, :the
pragmatic account appears to involve arbitrary inference, and arbitrary
amounts of k nowledge . in the mapping process . Thus we would expect that' the
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average-case computational complexity of a pragmatically oriented matcher
will be dramatically worse than SME.

6.1 .. Matching algorithms

To our knowledge . SME is unique in that it generates all structurally consistent
analogical mappings without search . Previous partial matchers have utilized
heuristic search through the space of possible matches, typically returning a
single, best match (e .g., (15, 43, 52, 55, 73 . 74, 77-79)) . Some researchers on
analogy have suggested that generating all possible interpretations is computa-
tionally intractable (43, 52, 78). Our analysis and empirical results indicate that
this conclusion must be substantially modified . Only when structural con-
straints do not exist, or are ignored . does the computation become intractable .
For instance, in (52) the knowledge base was uniform and had no higher-order
structure . In such cases exponential explosions are unavoidable .

Winston (78 .79] did some of the earliest, ground-breaking work in analogy .
His system was the first to be tested on a wide variety of examples from several
domains, thus setting an important methodological example . It still stands
today as the most complete analogical reasoning and learning system, incor-
porating a model of access, reasoning via precedents, and learning new rules
from examples . His importance-dominated matcher heuristically searched for a
single best match . It begins by enumerating all entity pairings and works
upward to match relations, thus generating all N Eh,!/(NEB, - NEt )1 possible
entity pairings . Because SME only introduces entity pairings when suggested by
potential shared relational structure, it typically generates many fewer entity
pairings. Some limited amount of pruning due to domain-specific category
information was also available on demand, such as requiring that males match
with males. By contrast, SME ignores attributes when in analogy mode, unless
they play a role in a larger systematic structure . Winston's scoring scheme
would attribute one point for each shared relation (e.g., LOVE, CAUSE),
property (e.g . . STRONG, BEAUTIFUL), and class classification (e .g., A-KIND-
OF(?x, woman)). Unlike SME's analogy rules, this scheme makes no distinction
between a single, systematic relational chain and a large collection of indepen-
dent facts .

Kline's RELAX system (52) focused on matching relations rather than entities .
RELAX did not attempt to maintain structural consistency . allowing many-to-
one mappings between entities or predicate instances . In conjunction with a
semantic network, RELAX was able to match items having quite different
syntax (e.g . . (Segment Al A2) matching (Angle Al X A2)) . However, there was
no guarantee that the best match would be found due to local pruning during
search .
SME computes a structural match first, and then uses this structural match to

derive candidate inferences. The implementations of Winston (78 .79( and
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Burstein [5] are similar to SME in this respect . An alternate strategy is used by
Kedar-Cabelli [50] . Carbonell [b, 7] . and Greiner [41] . These programs do not
perform a match per se, but instead attempt to carry over relevant structure
first and modify it until it applies to the target domain . The match arises as an
implicit result of the structure modification . We know of no complexity results
available for the technique, but we suspect it is much worse than SME . It
appears that there is great potential for extensive search in the modification
method. Furthermore, the modification method effectively requires that the
access mechanism is able to provide only salient structures (e.g., purpose-
directed [50]) since the focusing mechanism of a partial match is not, present .
This means these systems are unlikely to ever derive a surprising result' from an
analogy . See [31] for details .
Programs for forming inductive generalizations have also addressed the

partial matching problem . These systems use a heuristically pruned search to
build up sets of correspondences between terms which are then variabli ;ed to
form generalized concept descriptions . Since these systems were not designed
for analogy, they resemble the operation of SME programmed as a literal graph
matcher (e .g., they could not match Pressure to Temperature) . Hayes-Roth and
McDermott's SPROUTER (43) and Dietterich and Michalski's INDUCE 1 .2 [15]
utilize one-to-one consistency in matching . Vere's THOTH system [73,741 uses
less stringent match criteria . Once the initial sets of matched terms are built,
previously unmatched terms may be added to the match if their constants are
in related positions . In the process . THOTH may allow many-to-one mappings
between terms .

The usefulness of many-to-one mappings in matches has been discussed in
the literature (43, 52] . Hayes-Roth and McDermott [43] advocate the need for
many-to-one mappings among entities . Kline (52] calls for many-to-one map-
pings between propositions as well . For example, Kline points out that in
trying to match a description of National League baseball to American League
baseball, the statement (male Nl.pitcher) should match both (male ALpiteher) and
(male ALdesignatedhitter) .

Allowing many-to-one mappings undercuts structural consistency, which in
our view is central to analogy. Many-to-one mappings appear to be permitted
in artistic metaphor, but are not viewed as acceptable by subjects in explana-
tory, predictive analogies [29, 38] . However, we agree that multiple mappings
are sometimes useful [12] . We propose that many-to-one mappings should be
viewed as multiple analogies between the same base and target . Since SME

produces all of the interpretations of an analogy, a postprocessor could keep
more than one of them to achieve the advantages of many-to-one mappings,
without sacrificing consistency and structural clarity . Thus in the baseball
example, SME would produce an offense interpretation and a defense interpre-
tation .
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6.2. Other pattern-matching systems

Structure-mapping is a form of pattern-matching, but it is different than
previous pattern-matchers . For example, it should be clear that structure-
mapping neither subsumes unification nor is subsumed by it . Consider the pair
of statements

(CAUSE (FLY PERSONI) (FALL PERSON1))
(CAUSE (FLY PERSON2) (FALL PERSON2))

These could be part of a legitimate analogy, with PERSON1 being mapped to
PERSON2, but these two statements do not unify since PERSON1 and
PERSON2 are distinct constants . Conversely,

(CAUSE (?X PERSONI) (FALL PERSONI ))
(CAUSE (FLY ?Y) (FALL ?Z))

will unify, assuming ? indicates variables, with the substitutions :

?X N FLY
?Y •-• PERSON1
?Z N PERSONI

However, since structure-mapping treats variables as constants, these state-
ments fail to be analogous in two ways . First, FLY and ?X are treated as distinct
relations, and thus cannot match . Second, ?Y and ?Z are considered to be
distinct entities, and thus are forbidden to map to the same target item (i.e.,
PERSONI ) .

Most importantly, the goals of structure-mapping and unification are com-
pletely different . Unification seeks a set of substitutions which makes two
statements identical . Structure-mapping seeks a set of correspondences be-
tween two descriptions which can suggest additional inferences . Unlike unifica-
tion, partial matches are perfectly acceptable .

Several of the implementation techniques used in SME are however similar in
spirit to those used in axiomatized unifiers [4, 56,601, which use equational
theories (such as associativity and commutativity) to extend equality beyond
identicality .

7. Discussion

We have described the structure-mapping engine, a simulation of Gentner's
structure-mapping theory of analogy and similarity, and a tool-kit for building
matchers consistent with the structural consistency constraint . We have de-
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scribed SME's algorithm in sufficient detail to allow replication by other
researchers. SME is both efficient and flexible . A particular matching algorithm
is specified by a set of constructor rules and evidence rules . It produces all
structurally consistent interpretations of a match, without backtracking . The
interpretations include the candidate inferences suggested by the match and a
structural evaluation score, which gives a rough measure of quality . SME has
been used both in cognitive simulation studies and a machine learning project .
In the cognitive simulation studies . the results so far indicate that sME . when
guided with analogy rules, replicates human performance . In the machine
learning project (PHINEAS) . SME's flexibility provides the means for construct-
ing new qualitative theories to explain observations .

While our complexity analysis indicates that SME's worst-case performance is
factorial, our empirical experience is that the typical behavior is much better
than that. Importantly . the characteristic which determines efficiency is not
size, but the degree of structure of the knowledge . Unlike many AI systems,
SME performs better with systematic, deeply nested descriptions .

In this section we discuss some broader implications of the project, and
sketch some of our plans for future work .

7 .1. Representational issues

The SME algorithm is of necessity sensitive to the detailed form of the
representation . since we are forbidding domain-specific inference in the match-
ing process. Existing Al systems rarely have more than one or two distinct
ways to describe any particular situation or theory . But as our programs grow
more complex (or as we consider modeling the range and depth of human
knowledge) the number of structurally distinct representations for the same
situation is likely to increase . For example, a story might be represented at the
highest level by a simple classification (i.e ., GREEK-MYTH), at an intermediate
level by relationships involving the major characters (i.e., (CAUSE (MELTING

WAX) FALL(ICARUS))), and at the lowest level by something like conceptual
dependencies. An engineer's knowledge of a calculator might include its
functional description . the algorithms it uses, and the axioms of arithmetic
expressed in set theory . Unless there is some window of overlap between the
levels of description for base and target, no analogy will be found . When our
representations reach this complexity, how could SME cope?

There are several possible approaches to this problem. Consider the set of
possible representations for a description . Assume these representations can be
ordered (at least partially) in terms of degree of abstraction . If two descriptions
are too abstract, there will either be no predicate overlap (e.g . . GREEK-MYTH
versus NORSE-MYTH) or identity (e .g., MYTH versus MYTH) . On the other

" SME is publically available for interested researchers . There is a manual available (191 which
provides extensive implementation-level details and interface information .
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hand, if two descriptions are greatly detailed, there can be too many spurious .
inconsequential matches (e .g . . describing the actions of characters every
microsecond) . The problem is to find levels of description which provide useful
analogies. We believe one solution is to invoke SME repeatedly, using knowl-
edge of the definitions of predicates to shift the base or target descriptions up
or down in the space of possible representations until a useful size match is
found .

The structure-mapping identicality constraint (i .e . . requiring that relational
predicates match only if they are identical) is another source of representation-
sentitivity . This constraint is important in that it ensures the structures being
compared are semantically similar . However, it can be overly restrictive . We
are currently exploring ways to relax the identicality requirement while still
maintaining semantic similarity . One approach . called the minimal ascension
principle, allows relations to match if they share a common ancestor in a
multi-root is-a hierarchy of expression types [20] . The local evidence score for
their match is inversely proportional (exponentially) to the relations' distance
in the hierarchy . This enables SME to match nonidentical relations if such a
match is supported by the surrounding structure, while still maintaining a
strong preference for matching semantically close relations . This approach, is
similar to (5, 41, 78] .

An orthogonal consideration is the degree of systematicity . Worst-case
behavior tends to occur when representations are large and relatively flat . For
example, SME is unable to duplicate Kline's baseball analogy [521 within a
reasonable amount of time (i.e ., hours) . This is due to his flat description of
the domain (e.g., (MALE catcher), (BATS left-fielder), (BATS center-fielder), etc .) .
Changes in representation can make large differences . For example, a PHINEAS

problem which took SME 53 minutes was reduced to 34 seconds by imposing
more systematic structure [201 . We are currently exploring these trade-offs to
formulate more precise constraints on useful representations for analogical
reasoning and learning .

7.2 . Addressing the combinatorics

As we have shown . SME is O(N) except for the last critical merge step, which
has O(N!) worst-case performance . Our experience with both small (11
expressions) and large (71 expressions) domain descriptions indicates that
performance is more a function of representation and repetitiveness rather
than a function of size . We have found that even moderately structural domain
descriptions produce excellent performance . However, in practice it is not
always convenient to avoid traditional, flat domain representations . For such
cases generating all possible interpretations of an analogy may be prohibitive .
A simple modification of the SME algorithm offers a natural way to deal with
this problem . In particular . if we stop after the first merge step, SME provides
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an O(N) algorithm for generating the complete set of initial gmaps! The
subsequent merge steps could then be heuristically driven through a limited
search procedure (e .g ., beam-search, best-first . etc.) to produce the best or N
best maximal interpretations . Alternatively, we could retain the current VVIE
design (recall that the second merge step is required to support candidate
inference generation and is almost always O(N) or better) and simply drop
the troublesome third merge step . This is an (unused) option that the current
implementation provides . We have not yet explored the ramifications of
dropping merge step 3, although work with PHINEAS has indicated the need for
the maximality criterion in practice .

In the next sections, we discuss the potential for parallel versions of the SME

algorithm . In particular, we argue that (1) there are many opportunities for
parallel speedup, and (2) the expensive merge steps can be eliminated in
principle .

7.2.1 . Medium-grained parallel architectures

We begin by examining each stage of the algorithm to see how it might be
decomposed into parallel operations, and what kinds of speedups might result .
First we assume a software architecture that allows tasks to be spawned ; for
parallel execution (such as [1]), and we ignore communications and setup costs .

Constructing, match hypotheses . All :filter rules can be run independently,
giving rise to O(N) tasks . With enough processors this could be done in
constant time, assuming the structure-mapping match constructor rules . Each
:intern rule can be run on every match hypothesis as it gets created . Since these
rules can in turn create new match hypotheses . but only involving an expres-
sion's arguments, the best speedup would be roughly the log of the input .

Computing Conflicting, Emaps, and NoGood sets . The Conflicting set com-
putation is completely local . It could either be organized around each base or
target item, or around pairs of match hypotheses . Finding the Emaps and
No Good sets require propagation of results upwards . and hence again will take
log time .

Merge step 1 : Form initial combinations . Recall that this step starts from the
roots of the match hypothesis graph, adding the subgraph to the list of gmaps if
the hypothesis is not inconsistent and recursing on its offspring otherwise . The
results from each root are independent, and so may be done as separate tasks .
If each recursive step spawns a new process to handle each offspring, then the
minimum time is proportional again to the order of the highest root in the
graph .

Merge step 2 : Combine dependent but unconnected gmaps . Recall that this
step combines initial gmaps which share common base structure and are not
inconsistent when taken together . This procedure can be carried out bottom-
up, merging pairs which share base structure and are consistent together and
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then recursing on the results . The computation time will be logarithmic in the
number of gmaps .

Merge step 3 : Combine independent collections . This can be performed like
the previous step, but skipping pairs of gmaps that have common structure
(since they would have been merged previously and hence must be inconsis-
tent) . Again, with enough processors the time is bounded by the log of the
number of gmaps . However, since the number of gmaps is in the worst case
factorial, the number of tasks required could become-rather large .
This cursory analysis no doubt glosses over several problems lurking in

creating a highly parallel version of the SME algorithm. However, we believe
such algorithms could be very promising .

SME's simplicity also raises another interesting experimental possibility .
Given that currently many medium-grain parallel computers are being built
with reasonable amounts of RAM and a LISP environment on each machine, one
can imagine simply loading a copy of SME into each processor. Access
experiments involving very large knowledge bases, for example, would be
greatly sped up by allowing a pool of SMES to work over. the knowledge base in
a distributed fashion .

7.2.2. Connectionist architectures

Another interesting approach would be to only generate a single, best gmap
while still maintaining SME's "no search" policy . The problem of choosing
among all possible interpretations in analogy processing is very much like
choosing among possible interpretations of the sentence "John shot two bucks"
in natural language processing . A "no search" solution to this natural language
problem was provided by the connectionist work of Waltz and Pollack [761 .
Rather than explicitly constructing all possible sentence interpretations and
then choosing the best one, Waltz and Pollack used their networks to implicitly
represent all of the possible choices. Given a particular network, spreading
activation and lateral inhibition were used to find the single best interpretation .'
This work in fact inspired the use of the BMS for representing evidential
relationships and helped motivate the decomposition of the processing into the
local/global steps .

Consider the network produced by SME prior to the gmap merge steps
(shown in Fig. 5) . Some match hypotheses support each other (grounding
criterion) while others inhibit each other (Conflicting relations) . Viewing this as
a spreading activation, lateral inhibition network, it appears that standard
connectionist relaxation techniques could be used to produce a "best" interpre-
tation without explicitly generating all gmaps. Furthermore, it may be possible
to generate the second-best, third-best, etc . interpretations on demand by
inhibiting the nodes of the best interpretation, forcing the second-best to rise .
Thus SME would be able to establish a global interpretation simply as an
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indirect consequence of the establishment of local structural consistency and
systematicity . This would eliminate the single most expensive computation of
the SME algorithm . By eliminating explicit generation of all gmaps . the
complexity of the algorithm could drop to the 6(,v2) required to generate the
connectionist network .

7.3. Future work

7 .3 .1 . Cognitive simulation

We are conducting additional cognitive simulation studies of analogical reason-
ing, memory, and learning involving SME . One line of experiments concerns
the development of analogical reasoning . Psychological research shows a
marked developmental shift in analogical processing . Young children rely on
surface attribute information in mapping ; at older ages, systematic relational
mappings are preferred [36, 37, 48, 75] . Further, there is some evidence that a
similar shift from surface to systematic mappings occurs in the novice-expert
transition in adults [8, 53 . 61, 62] .

There are two very different interpretations for the analogical shift : (1)
acquisition of knowledge ; or (2) a change in the analogy algorithm . The
knowledge-based interpretation is that children and novices lack the necessary
relational structures to guide their analogizing. The second explanation is that
the algorithm for analogical mapping changes . either due to maturation or
learning . In human learning it is difficult to decide this issue, since exposure to
domain knowledge and practice in analogy and reasoning tend to occur
simultaneously . SME gives us the capability to vary independently the analogy
algorithm and the amount and kind of domain knowledge . For example, we
can compare identical evaluation algorithms operating on novice versus expert
representations, or we can compare different analogy evaluation rules operat-
ing on the same representation .
Another line of future development is exploring alternate versions of

structural evaluation . Recall that our current structural evaluation score is
simply the sum of all the match hypothesis weights in the gmap's correspond-
ences . There are two problems with the computation . First, there are several
other structural properties which should enter into the SES, such as the number
and size of connected components, the existence and structure of the candidate
inferences . Second . it is not normalized with respect to the sizes of the base
and target domains. The current SES can be used to compare matches of
different bases to the same target, or different targets to the same base . But it
cannot be used to compare two completely different analogies (i.e., different
bases and different targets). Janice Skorstad is building a programmable
structural evaluator module that will let us experiment with these factors and
different normalization schemes [66) . We suspect that being able to tune the
structural evaluation criteria might allow us to model individual and task
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differences in analogical processing . For example, a conservative strategy
might favor taking gmaps with some candidate inferences but not too m any . i n
order to maximize the probability of being correct .

We are also exploring ways to reduce the potential for tailorability in the
process of translating descriptions provided as experimental stimuli for human
subjects into formal representations for SME input . For example . Janice
Skorstad is creating a graphical editor for producing graphical figures for
experimental stimuli . One output of the editor is a picture which can be used as
a stimulus for psychological experiments . The other output is a set of symbolic
assertions with numerical parameters, which is expanded into SME input by a
simple inference engine that calculates spatial relationships, such as INSIDE or
LEFT-OF . These combined outputs will enable us to cleanly simulate the recent
results of Goldstone, Medin . and Gentner (40], who found a preference for
relational information even in perceptual similarity judgements . Inspired by
Winston's used of a pidgin-English parser for input (79], we are also seeking a
parser that, perhaps in conjunction with a simple inference engine, can
produce useful descriptions of stories .

7 .3 .2 . Machine learning studies

Falkenhainer's PHINEAS program is part of the Automated Physicist Project at
the University of Illinois . This project, led by Forbus and Gerald DeJong . is
building a collection of programs that use qualitative and quantitative tech-
niques for reasoning and learning about the physical world . DeJong and his
students have built several programs that use explanation-based learning
[13 .14] to acquire knowledge of the physical world [58, 65] . Forbus' group has
developed a number of useful qualitative reasoning programs (25, 26, 45] which
can be used in learning projects (as PHINEAS demonstrates) . By combining
these results, we hope to build systems that can reason about a wide range of
physical phenomena and learn both from observation and by being taught .

Appendix A . SME Match Rules

The construction of a match is guided by a set of match rules that specify which
expressions and entities in the base and target might match and estimate the
believability of each possible component of a match . In our experiments using
SME, we currently use three types of rule sets, literal similarity, analogy . and
mere appearance .

A.1 . Literal similarity (LS) rules

The literal similarity rules look at both relations and object descriptions .

. : : : Define MH constructor rules

: : If predicates are the sane. match them

%,a
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(MHC-rule ( :filter ?b ?t :test (eq (expression-functor ?b) (expression-functor ?t)))
(install-MH ?b ?t))

: : Intern rule for noncommutath'e predicates-corresponding arguments only .
::Match compatible arguments of already matched items

(MHC-rule ( :intern ?b ?t :test (and (expression? ?b) (expression? ?t)

(not (commutative? (expression-functor ?b)))

(not (commutative? (expression-functor ?t)))))
(do ((bchildren (expression-arguments ?b) (cdr bchildren))

(tchildren (expression-arguments ?t) (cdr tchildren)))

((or (null bchildren) (null tchildren)))

(cond ((and (entity?'(first bchildren)) (entity? (first tchildren)))

(install-MH (first bchildren) (first tchildren)))

((and (function? (expression-functor (first bchildren)))
(function? (expression-functor (first tchildron))))

(install-MH (first bchildren) (first tchildren))))))

: : Intern rule for commutative predicates-any "compatible" arguments,
: : regardless of order .
: : Match compatible arguments of already matched items

(MHC-rule ( :intern ?b ?t :test (and (expression? ?b) (expression? ?t)

(commutative? (expression-functor ?b))
(commutative? (expression-functor ?t))))

(dolist (bchild (expression-arguments ?b))

(dolist (tchild (expression-arguments ?t))

(cond ((and (entity? bchild) (entity? tchild))

(install-MM bchild tchild))
((and (function? (expression-functor bchild))

(function? (expression-functor tchdd)))

(inwii-MH bchild tchiid))))))

: ; ; Define MH evidence rules

: : having the same functor is a good sign

(assert! 'same-functor)

(rule (( :intern (MH ?b ?t) :test (and (expression? ?b) (expression? ?t)
(eq (exprossaon-functor ?b)(expression-functor ?t)))))

(if (function? (expression-functor ?b))

(assert! (implies same-functor (MH ?b ?t) (0.2 .0 .0)))

(assert! (implies same-functor (MH ?b ?t) (0.5 .0 .011)))

: : check children (arguments) match potential

(assert! 'arguments-potentia!y-match)

(rule ((:intem (MM ?b ?t) test (and (expression? ?b) (expression? ?t))))

(if (children-match-potential lb It)
(assert! (implies arguments-potentially-match (MH ?b ?t) (0 .4 . 0.0)))

(assert! (implies arguments-potentially-match (MH ?b ?t) (0-0 - 0-8)))))

; ; if their order is similar, this is good . If the item is a function .

: ; ignore since order comparisons give false support here .
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(assert! 'order-similarity)

(rule (( :intern (MH ?b ?t) :test (and (expression? ?b) (expression? ?t)
(not (function? (expression-functor ?b)))
(not (function? (expression-functor ?t))))))

(cored ((_ (expression-order ?b) (expression-order ?t))
(assert! (implies order-similarity (MH ?b ?t) (0 .3 . 0 .0))))

((or (_ (expression-order ?b) (1+ (expression-order ?t)))
(_ (expression-order ?b) (1 - ( expression-order ?t))))

(assert! (implies order-similarity (MH ?b ?t) (0 .2 . 0 .05))))))

: : propagate evidence don •n-systematicity
: : support for the arg will be 0.8 of the current support for the parent

(rule (( :intem (MH ?bt ?tt) :test (and (expression? ?bt) (expression? ?tt )

(not (commutative? (expression-functor ?b1)))))

( :intern (MH ?b2 ?t2) :test (children-of? ?b2 ?t2 ?b1 ?t1 )))

(sme:assert! (implies (MH ?bt ?t1) (MH ?b2 ?12) (0 .8 .0.0))))

(rule (( :intern (MN ?b1 ?t1) :test (and (expression? ?bl) (expression? IM)
(commutative? (expression-functor ?bt ))))

(antem (MH ?b2 ?t2) :test (and (member ?b2 (expression-arguments ?bl) :test #'eq)

(member ?t2 (expression-arguments ?ti) :test #'eq))))

(sme:assert! (implies (MH ?b1 ?tt) (MH ?b2 ?t2) (0.8 .0 .0))))

Gmap rules

; : Support from its MHs . At this time we ignore other expressions such as number
; ; of candidate inferences, etc .

(rule ((:intern (GMAP ?gm)))

(dolist (mh (gm-elements ?gm))

(assert! '(implies, (mh-form mh) (GMAP ?gm)))))

A.2. Analogy (AN) rules

The analogy rules prefer systems of relations and discriminate against object
descriptions. The analogy evidence rules are identical to the literal similarity
evidence rules and are not repeated here . The match constructor rules only
differ in their check for attributes :

; ;; ; Define MH constructor rules

; ; If predicates are the same. match them

(MHC-rule ( :filler ?b ?t :test (and (eq (expression-functor ?b) (expression-functor ?t))

(not (attribute? (expression-functor ?b)))))

(install-MN ?b ?t))

: : Match compatible arguments of already matched items .
; ; Notice attributes are allowed to match here, since they are part of some

;; higher relation that matched .

; ; Intern rule for noncommutative predicates-corresponding arguments only .

(MHC-rule ( :intern ?b ?t lest (and (expression? ?b) (expression? ?t)

(not (commutative? (expression-functor ?b)))
(not (commutative? (expression-functor ?t)))))
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(do ((bchildren (expression-arguments ?b) (cdr bchildren))
(tchildren (expression-arguments ?t) (cdr tchildren)))
((or (null bchildren) (null tchildren)))

(cond ((and (entity? (first bchildren)) (entity? (first tchildren)))

(install-MH (first bchildren) (first tchildren)))

((and (function? (expression-functor (first bchildren)))

(function? (expression-functor (first tchildren))))
(install-MH (first bchildren) (first tchildren)))

((and (attribute? (expression-functor (first bchildren)))

(eq (expression-functor (first bchildren))
(expression-functor (first tchildren))))

(install-MH (first bchildren) (first tchildren))))))

: : Intern rule for commutative predicates-any "compatible" arguments .
;; not necessarily corresponding .

(MHC-rule ( :intern ?b ?t :test (and (expression? ?b) (expression? ?t)

(commutative? (expression-functor ?b))

(commutative? (expression-functor ?t))))
(dolist (bchild (expression-arguments ?b))

(dolist (tchild (expression-arguments ?t))

(cond ((and (entity? bchild) (entity? tchild))
(install-MH bchild tchild))

((and (function? (expression-functor bchild))

(function? (expression-functor tchild)))

(Install-MH bchild tchld))

((and (attribute? (expression-functor bchild))

(eq (expression-functor bchild) (expression-functor tctaid)))
(install-MH bchild tchild))))))

A .3. Mere-appearance (MA) rules

The mere-appearance rules focus on object description and prevent matches
between functions or relations . As a result, the number of evidence rules is
greatly reduced .

: ; ; ; Define MH constructor rules

(MHC-rule ( :filter ?b ?t :test (and (eq (expression-funetor ?b) (expression-funotor ?t))

( < _ (expression-order ?b) t )

( < _ (expression •order ?!) 11 )))

(instal -MH ?b ?t))

(MHC-rule (stem ?b ?t lest (and (expression? ?b) (expression? ?t)

(not (commutative? (expression-functor ?b)))
(not (commutative? (expression-functor ?t)))))

(do ((bchildren (expression-arguments ?b) (cdr bchildren))

(tchildren (expression- arguments ?t) (cdr tchildren)))

((or (null bchildren) (null tchildren)))
Of (and (entity? (first bchildren)) (entity? (first tchildren)))

(install-MM (first bchildren) (first tchildren)))))

(MHC-rule ( :intem ?b ?t lest (and (expression? ?b) (expression? ?t)
(commutative? (expression-functor ?b))

(commutative? (expression-tunctor ?t) ))
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(dolist (bchild (expression-arguments ?b))

(dolist (tchild (expression-arguments ?t))

(it (and (entity? bchild) (entity? tchild))

(install-MH bchild tchild)))))

Define MH evidence rules

; : having the same functor is a good sign

(initial-assertion (assert! 'same-functor))

ii

(rule (( :intern (MH ?b ?t) :test (and (expression? ?b) (expression? ?t)

(eq (expression-functor ?b) (expression-functor ?t)))))
(cond ((attribute? (expression-functor ?b))

(assert! (implies same-functor (MH ?b ?t) (0 .5 . 0 .0))))

((=t (max (expression-order ?b) (expression-order ?t)))

(assert! (implies same-functor (MH ?b ?t) (0 .4 . 0.0))))))

: ; propagate evidence down-only for entity MHs caused by attribute pairings
; ; support for the arg will be 0.9 of the current support for the parent

(rule (( :intern (MH ?bt ?ti) :test (and (expression? ?bt) (expression? ?tt )

(< _ (max (expression-order ?bt) (expression-order ?t1)) t )

(not (commutative? (expression-functor ?bt )))))

(Intern (MH ?b2 ?t2) :test (children-of? ?b2 ?t2 ?bl ?tt)))

(sme:assert! (implies (MM ?bt ?tl) (MH ?b2 ?t2) (0-9 - 0.011M

(rule (( :intern (MH ?bl ?ti) :test (and (expression? ?bt) (expression? M)
(<_ (max (expression-order ?bt) (expression-order V)) t )

(commutative? (expression-functor ?bt ))))

( :intern (MH ?b2 ?t2) :test (and (member ?b2 (expression-arguments ?bi) :test #'eq)

(member ?t2 (expression-arguments ?tt) :test e'eq))))

(sme:assert! (implies (MH ?bl ?tt) (MH ?b2 ?t2) (0.9 .0 .0))))

; ; ; ; Gmap rules

;; Support from its MHs . At this time we ignore other expressions such as ?number of
; ;;candidate inferences

(rule (( :intern (GMAP ?gm)))

(dolist (mh (gm-elements ?gm))

(assert! '(implies ,(mh-form mh) (GMAP ?gm)))))

Appendix B. Sample Domain Descriptions

In this section we show the domain description given to SME for the described
examples .

B.1 . Simple water flow/heat flow

B .1 .1 . Water flow

(de(Entiy water type inanimate)

(defEntiy beaker :type inanimate)

(defEntity vial :type inanimate)

(defEntity pipe ;type inanimate)
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B .1 .2 . Heat flow

(defEntity coffee :type inanimate)
(deEntity ice-cube :type inanimate)
(defEntiy bar type inanimate)
(defEntiy heat :type inanimate)

(defoescviption simple-heat-flow
entities (coffee ice-cube bar heat)
expressions

(((flow coffee ice-cube heat bar) :name Now) .
((temperature coffee) :name temp-ooffee)
((temperature ice-cube) :name temp-ice-cube)
((greater temp-coffee temOce-cubs) :name >temperature)
(flat-top coffee)
(liquid coffee)))

B .2. Solar system/Rutherford atom

B .2.1 . Solar system

(defEntity sun type inanimate)
(defEntiy planet type inanimate)

(defDescription solar-system
entities (sun planet)
expressions

(((mass sun) :name mass-sun)
((mass planet) :name mass-planet)
((greater mass-sun mass-planet) :name >mass)
((attracts sun planet) :name attracts)
((revolve-around planet sun) :name revolve)
((and >mass attracts) :name ands)
((cause ands revolve) :name cause-revolve)
((temperature sun) :name temp-sun)
((temperature planet) :name temp-planet)
((greater temp-sun temp-planet) :name >temp)
((gravity mass-sun mass-planet) :name force-gravity)
((cause force-gravity attracts) :name why-attracts)))

B. FALKENHAINER ET AL .

(defDescription simple-water-flow
entities (water beaker vial pipe)
expressions

(((flow beaker vial water pipe) :name wflow)
((pressure beaker) :name pressure-beaker)
((pressure vial) :name pressure-vial)
((greater pressure-beaker pressure-vial) :name >pressure)
((greater (diameter beaker) (diameter vial)) :name >diameter)
((cause >pressure wflow) :name cause-flow)
(flat-top water)
(liquid water)))
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B .2 .2 . Rutherford atom

(detEntity nucleus :type inanimate)
(detEntity electron type inanimate)

(defDescription rutherford-atom
entity (nucleus electron)
expressions

(((mass nucleus :name mass-n)
((mass electron) :name mass-e)
((greater mass-n mass-e) :name >mass)
((attracts nucleus electron) :name attracts)
((revolve-around electron nucleus) :name revolve)
((charge electron) :name q-electron)
((charge nucleus) :name q-nucleus)
((opposite-sign q-nucleus q-electron) :name >charge)
((cause >charge attracts) :name why-attracts)))

B .3. Karla stories

B .3 .1 . Zerdia the eagle : Base story

(defEntity Karla)
(defEntiy hunter)
(defEntity feathers)
(defEntiy cross-bow)
(defEntity Failed)
(defEntity high)

(defDescription base-5
entities (Karta hunter feathers cross-bow Failed high)
expressions

(((bird Karla) :name bird-Karta)
((person hunter) :name person-hunter)
((warlike hunter) :name warike-hunter)
((Karlas-asset feathers) :name feathers-asset)
((weapon cross-bow) :name weapon-bow)
((used-for feathers cross-bow) :name has-feathers)
((not has-feathers) :name not-has-feathers)
((attack hunter Karla) :rearm attack-hunter)
((not attack-hunter) :name not-attack)
((see Karla hunter) :name see-Karla)
((follow see-Karla attack-hunter) :name follow-see-attack)
((success attack-hunter) :name success-attack)
((equals success-attack Failed) :name failed-attack)
((cause not-has-feathers failed-attack) :name cause-failed-attack)
((desire hunter feathers) :name desire-feathers)
((realize Karla desire-feathers) :name realize-desire)
((follow failed-attack realize-desire) :name follow-realize)
((offer Karla feathers hunter) :name offer-feathers)
((cause realize-desire offer-feathers) :name cause-offer)
((obtain hunter feathers) :name take-feathers)
((cause offer-feathers take-feathers) :name cause-take)

57
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((happiness hunter) :name happiness-hunter)
((equals happiness-hunter high) :name happy-hunter)

((cause take-feathers happy-hunter) :name cause-happy)
((promise hunter Karla not-attack) :name promise-hunter)

((cause happy-hunter promise-hunter) :name cause-promise)))

B .3 .2 . Zerdia the country : TA5

(defEntity Zerdia)

(defEntity Gagrach)

(defEntity supercomputer)

(defEntity missiles)

(defEntity failed)
(do fEntity high)

(defDescription to-5

entities (Zerdia Gagrach supercomputer missiles failed high)
expressions

(((country Zerdia) :name country-Zerdia)

((country Gagrach) :name country-Gagrach)
((warlike Gagrach) :name warlike-Gagrach)

((Zerdias-asset supercomputer) :name supercomputer-asset)

((weapon missiles) :name weapon-bow)

((use-for supercomputer missiles) :name use-supercomputer)

((not use-supercomputer) :name not-use-supercomputer)

((attack Gagrach Zerdia) :name attack-Gagrach)

((not attack-Gagrach) :name not-attack)

((success attack-Gagrach) :name success-attack)

((equals success-attack failed) :name failed-attack)

((cause not-use-supercomputer failed-attack) :name cause-failed-attack)

((desire Gagrach Supercomputer) :name desire-supercomputer)

((realize Zerdia desire-supercomputer) :name realize-desire)

((follow failed-attack realize-desire) :name follow-realize)

((offer Zerdia supercomputer Gagrach) :name offer-supercomputer)

((cause realize-desire offer-supercomputer) :name cause-offer)

((obtain Gagrach supenowmmputer) :name buy-supercomputer)

((cause offer-supercomputer buy-supercomputer) :name cause-buy)

((happiness Gagrach) :name happiness-Gagrach)

((equals happress-Gagrach high) :name happy-Gagrach)

((cause buy-supercomRxtK happy-Gagrach) :name cause-happy)

((promise Gagrach Zerdla not-attack) :name promise)

((cause happy-Gagrach promise) :name cause-promise)))

B .3 .3. Zerdia the hawk : MAS

(defEntity Zerdia)

(defEntity sportsman)

(deEntity feathers)
(defEntity cross-bow)

(defEntiy true)

(defDescnption ma-S
entities (Zerdia sportsman feathers cross-bow true)
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expressions
(((bird Zerdia) :name bird-Zerdia)
((person sportsman) :name person-sportsman)
((warlike sportsman) :name warlike-sportsman)
((Zerdias-asset feathers) :name feathers-asset)
((weapon cross-bow) :name weapon-bow)
((used-for feathers cross-bow) :name has-feathers)
((desire sportsman feathers) :name desire-feathers)
((realize Zerdia desire-feathers) :name realize-desire)
((offer Zerdia feathers sportsman) :name offer-feathers)
((cause realize-desire offer-feathers) :name cause-offer) . .
((obtain sportsman feathers) :name take-feathers)
((cause offer-feathers take-feathers) :name cause-take)
((attack sportsman Zerdia) :name attack-sportsman)
((not attack-sportsman) :name not-attack)
((promise sportsman Zerdia not-attack) :name promise)
((cause take-feathers promise) :name cause-promise)
((see Zerdia sportsman) :name see-Zerdia)
((follow promise see-Zerdia) :name follow-promise)
((follow see-Zerdia attack-sportsman) :name follow-see)
((success attack-sportsman) :name success-attack)
((equals success-attack true) :name successful-attack)
((cause has-feathers successful-attack) :name cause-success-attack)
((realize Zerdia has-feathers) :name realize-Zerdia)
((follow successful-attack realize-Zerdia) :name follow-suck-attack)))
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