24-Month-Old Infants’ Interpretations of Novel Verbs and Nouns in Dynamic Scenes

Sandra R. Waxman
Northwestern University

Jeffrey L. Lidz
University of Maryland

Irena E. Braun
Northwestern University

Tracy Lavin
Canadian Council on Learning
Vancouver, British Columbia, Canada
Abstract
The current experiments address several concerns, both empirical and theoretical in nature, that have surfaced within the verb-learning literature. They begin to reconcile what, until now, has been a large and largely unexplained gap between infants’ well-documented ability to acquire verbs in the natural course of their lives and their rather surprising failures to do so in many laboratory-based tasks. We presented 24-month-old infants with dynamic scenes (e.g., a man waving a balloon), and asked a) whether infants could construe these scenes flexibly, noticing the consistent action (e.g., waving) as well as the consistent object (e.g., the balloon) and b) whether their construals of the scenes were influenced by the grammatical form of a novel word used to describe them (verb or noun). We document that 24-month-olds’ representations of novel words are sufficiently precise to permit them to map novel verbs to event categories (e.g., waving events) and novel nouns to object categories (e.g., balloons). We also document the time-course underlying infants’ mapping of the novel words. These results beckon us to move beyond asking whether or not infants can represent verb meanings, and to consider instead the conditions that support successful verb learning in infants and young children.

Keywords: language acquisition, word learning, concept development
24-Month-Old Infants’ Interpretations of Novel Verbs and Nouns in Dynamic Scenes

1. Introduction

Human infants accomplish many remarkable feats, presenting themselves by 24 months as walking, jumping, talking, tumbling, socially-engaging forces of nature. Among these accomplishments, infants’ dramatic success in word-learning has captured special interest within the cognitive sciences. This interest derives largely from the fact that word-learning rests upon (at least) three essentially cognitive capacities: infants must identify distinct words from the continuous stream of human language in which they are immersed; they must build concepts that capture the relations among the objects and events that they encounter; and they must bring these into correspondence. It is now clear that even before they take their first steps, infants make important advances in each of these areas, and that from the onset of word learning, their conceptual and linguistic advances are powerfully linked.

Imagine a scenario in which an infant observes a clown waving a balloon emphatically in the air, while his father says, “The clown is waving the balloon!” To learn a word from this scenario, the infant must solve a three-piece puzzle: (1) identify the relevant conceptual units (this may be an individual object (e.g., the clown; the balloon), a category of objects (e.g., clowns, balloons), an event (e.g., waving), etc.), (2) identify the relevant linguistic units (e.g., the words and phrases), and (3) establish a mapping between them. Word learning requires a certain degree of abstraction in solving each piece of this puzzle. Any given utterance of a word must be related to a more abstract phonological representation if it is to be recognized across speakers and contexts; any given individual or event must also be related to a more abstract concept if the word is to be extended beyond the particular scene in which it was introduced.
Moreover, every human language is comprised of different kinds of words (i.e., different grammatical categories: nouns, adjectives, verbs, etc.), each highlighting a distinct aspect of a given scene and each supporting a unique pattern of extension. To be successful in word learning, learners must be sensitive to this feature as well. For example, to acquire the meaning of a noun (e.g., clown), learners must eventually come to understand that although this word may have been introduced in a scene in which a particular object (e.g., a clown) was engaged in a particular event (waving a balloon), that noun can be generalized to other objects of the same kind (other clowns) even if they are engaged in different actions (e.g., hitting a balloon or pedaling a unicycle). Adjectives are characterized by a very different pattern of extension. Here, the learner must somehow understand that an adjective (e.g., yellow) picks out a property of an object and not the object itself, and can be generalized to other instances of that property, independent of the particular entity embodying it (e.g., to other yellow things, including some clowns, toys, and blankets). Finally, verbs are characterized by yet another extensional pattern. A verb (e.g., wave) describes an event or relation among a set of individuals (e.g., clown, balloon) at a particular moment in time. To acquire the meaning of a verb, learners must understand that it can be generalized to other events of the same kind (waving events), even if they involve different participants at different times and in different locations (e.g., a girl waving a flag in a parade). In essence, then, successful learners will be ones who understand that extending a noun requires abstracting over the events that the labeled object is engaged in and that extending a verb requires abstracting over the participants in the labeled event.¹

2. Word-learning in infancy: Overview of evidence.

Despite this complexity, infants meet the challenge of word-learning with remarkable facility, typically producing their first words at roughly their first birthdays and adding new
words rapidly thereafter. Infants’ early lexicons tend to be dominated by nouns (or more precisely, by words that in the adult lexicon refer to individual objects and categories of objects). Verbs (and other predicate forms, including adjectives) do not appear in appreciable number in infants’ productive lexicons until several months later, between roughly 20 - 24 months. (For recent reviews, see Gleitman, Cassidy, Nappa, Papafragou and Trueswell (2005) or Waxman and Lidz (2006); also see Gentner, 1982.) This developmental phenomenon, favoring the acquisition of nouns over verbs, reveals that these distinct grammatical forms differ not only in the kinds of meanings they convey, but also in their underlying course of acquisition. In contrast to infants’ early and robust success with mapping nouns to meaning, infants’ ability to acquire verbs has proven more protracted and, in experimental work, more elusive.

In this section, and in the experiments that follow, we address several concerns, both empirical and theoretical in nature, that have surfaced within the verb-learning literature (for recent reviews, see Hirsh-Pasek and Golinkoff, 2006; Lidz and Waxman, 2006; also see Tomasello and Merriman, 1995). First, accounting for the developmental phenomenon favoring nouns has been the focus of intense debate. Although a thorough discussion of these accounts is beyond our scope here, several key observations are relevant. First, the very fact that nouns are acquired so early suggests that noun-learning may not be the paradigmatic case for word-learning (Gleitman, et al 2005; Waxman & Lidz, 2006). It also suggests that the conceptual or linguistic underpinnings that are required to support the acquisition of verb meaning may differ importantly from those required for the acquisition of noun meaning. Focusing on conceptual underpinnings, recent evidence suggests that by 8 – 12 months of age, infants are sensitive to fundamental components of events, including animacy, agency and causal relations (Buresh, Wilson-Brune & Woodward, 2006; Casasola & Cohen, 2000; Gergely & Csibra, 2003; Gergely,

Nádasdy, Csibra, & Biró, 1995; Gertner, Fisher, & Eisengart, 2006; Golinkoff & Hirsch-Pasek, 2006; Golinkoff, Hirsh-Pasek, Bloom, Smith, Woodward, & Akhtar, 2000; Leslie & Keeble, 1987; Meltzoff, 2007; Sommerville, Woodward, & Needham 2005; Wagner & Carey, 2005; Wilson-Brune & Woodward, 2004). Infants between 12 and 24 months are also sensitive to other key elements of events, including changes of state, result, manner and path of motion (Bunger, 2007; Bunger & Lidz, 2004; Pruden, Hirsh-Pasek, Maguire, & Meyer, 2004; Pulverman, Hirsh-Pasek, Pruden, & Golinkoff, 2006). These recent findings, suggesting that infants’ construals of at least some events nicely align with the concepts labeled by verbs, provides strong in principle supports for a “…a seamless and transparent mapping onto verbs…” (Gordon, 2003:192). Based on this evidence, then, it is unlikely that infants’ relatively delayed acquisition of verbs stems from an inability on their part to represent the kinds of concepts that underlie verb meaning.

Focusing on linguistic matters, recent research has converged on a more likely possibility. Infants’ relative delay in acquiring verbs may reflect the fact that the meaning of a verb depends upon the arguments that it takes and the relation among them. Simply put, because nouns and noun phrases constitute those arguments, it is reasonable to assume that to identify the event labeled by a particular verb, learners will depend upon the noun phrases that represent the event participants and the linguistic relations among these phrases (Fisher, Hall, Rakowitz, & Gleitman, 1994; Gillette, Gleitman, Gleitman & Lederer, 1999; Gleitman, et al., 2005; Landau & Gleitman, 1985; Lidz, Gleitman & Gleitman 2003; Piccin & Waxman, 2007a; Snedeker & Gleitman, 2004; Waxman & Lidz, 2006). On this view, without access to the nouns, it should be difficult for learners to identify the arguments of a verb and therefore impossible to identify the event labeled by the verb in that context.
If this analysis is correct, then we should observe two consequences. First, once infants have acquired a store of nouns that can serve as arguments, verb learning should begin to proceed fluidly. Second, in the process of acquiring verb meaning, infants should be responsive to the particular noun phrases with which they are introduced and the relations among them.

Focusing in on the verbs. A review of the verb-learning literature suggests that both of these consequences are indeed observed. At roughly 24 months, infants typically begin to add a sizeable number of verbs to their productive lexicons, and use them systematically to refer to actions (e.g., eat, run), mental states (e.g., want, see) and relations (e.g., touch, push) (Fenson, Bates, Dale, Goodman, Reznick, & Thal, 2000). At this point, infants also demonstrate a clear capacity to map novel verbs onto categories of events in experimental tasks, and in doing so, to take into account syntactic information (including for example, the number and types of sentence frames in which a novel verb appears and the relations among the noun phrases in these frames) to narrow their hypotheses about possible verb meanings (Akhtar & Tomasello, 1996; Bunger & Lidz, 2006; Fernandes, Marcus, DiNubila, & Vouloumanos, 2006; Fisher, 2002; Gertner, et al., 2006; Gleitman, 1990; Gleitman et al., 2005; Hirsch-Pasek, Golinkoff, & Naigles, 1996; Landau & Gleitman, 1985; Naigles, 1990, 1996).

For example, in Naigles (1990), 25-month-old infants were familiarized to a complex event involving two participant objects: a duck and a bunny. With one arm, the duck and the bunny each produced synchronized circles in the air; with the other arm, the duck pushed down on the bunny’s head, forcing him to squat. At issue was whether and how learners used the syntactic context in which a novel verb was presented to decide which component(s) of an event were key to its meaning. The results were straightforward. When the verb was presented in a transitive frame (e.g., “The duck is gorping the bunny”), infants mapped the novel verb (gorping)
to the causative component (the duck pushing down on the bunny’s head); when the verb was presented in an intransitive frame (e.g., “The duck and the bunny are gorping”), infants mapped the verb to either the causative or synchronous component. This outcome reveals that infants possess at least some rudimentary knowledge of noun phrases and argument structure (e.g., they distinguish transitive from intransitive constructions) and some rudimentary expectations about how these structures map to events. More specifically, the results reveal that by 25 months, infants expect that verbs in transitive constructions will map to causal events (Bunger & Lidz, 2004, 2006; Fisher, 1996; Lidz, Gleitman & Gleitman, 2003; Naigles, 1990; Naigles & Kako 1993).

Findings like this suggest that once verb learning is underway, the acquisition process appears to be exquisitely tuned. Infants are sensitive to apparently abstract relations between particular syntactic frames and particular components of meaning, relations that are evident universally across human languages (Geyer, 1998; Lee & Naigles, 2005; Li, 1994; Lidz, Gleitman & Gleitman, 2003, 2004), and recruit these relations when seeking to establish the meaning of a novel verb. In short, these studies underscore considerable success in verb learning both in and out of the laboratory, and a finely-calibrated use of syntactic information in doing so.

Nonetheless, the verb learning literature also reveals some astonishing failures, many of which persist well into the preschool years. A recent series of studies comparing noun- and verb-learning serves to illustrate this point (Imai, Haryu, & Okada, 2005; see also Kersten and Smith, 2002; Meyer et al., 2003). Here, adults and children (3- and 5-year-olds) viewed a standard event, in which an actor performed a novel action with a novel object. This event was labeled either with a novel noun (“Look! There is an X!”) or a novel verb (“Look! There is Xing!”). At test, participants viewed two different events, one depicting the same action performed now on a
new object, and the other depicting a new action performed on the familiar object. Participants were instructed either to “Find the X” (noun condition) or “Find X’ing” (verb condition).

Perhaps not surprisingly, adults extended novel nouns to the ‘same object’ test event (successfully extending the noun to an event involving the familiar object even though it was involved in a new action). Also not surprisingly, adults extended novel verbs to the ‘same action’ test event (successfully generalizing the verb to an event involving the familiar action even though it now involved a new participant). Clearly, then, adults successfully extended novel nouns and verbs beyond the particular events in which they had been introduced. Five-year-olds did the same. However, 3-year-olds revealed a different pattern. Like their elders, they extended novel nouns to the ‘same object’ test event; but unlike their elders, they performed at chance when asked to extend the novel verbs. This is a robust finding, and one that has been observed in a range of languages, including English, Mandarin, and Japanese (Imai, et al., in press).

How can we reconcile this striking failure in verb learning in preschool-aged children with the finely-calibrated successes of infants (reviewed above)? A review of the evidence offers an intriguing observation: infants and young children succeed in verb-learning when the very same participant objects are present in all the events, but encounter difficulty when there is a change in the event participants. Recall, for example, that in Naigles (1990), where infants saw the same two participant objects (a duck and a bunny) in every scene, infants mapped novel verbs successfully and used syntactic information (the number of noun phrases and relations among them) as a guide in homing in on the verb’s meaning. But a very different picture of verb-learning emerges when young learners are required to extend the novel verb to a token of the same event category, but with different participant objects, as in Imai, Haryu, and Okada (2005). When this was the case, 3-year-olds were essentially ‘captured’ by the participant objects, as
witnessed by their difficulty generalizing the verb to an event that preserved the action but involved a different participant object.

There is, in fact, considerable support for this interpretation. For example, in his classic work on parts of speech, Brown (1957) introduced children to scenes (e.g., a boy scooping a novel substance (resembling sand) with a novel instrument (resembling a scoop)), and described this event with a novel word. When the novel word was presented as a noun (e.g., “Can you show me a sib?”), 3- to 5-year-old children overwhelmingly pointed to the novel object (scoop). When the novel word was presented as a verb (e.g., “Can you show me sibbing?”), they revealed a strong tendency to point to the novel action. Nonetheless, on fully 25% of the trials involving verbs, children pointed to the novel object. Along these same lines, Behrend (1990) reported that 3- to 5-year-old children were less likely than adults to generalize a novel verb to an event, if the event involved the same agent performing the same action, but a different instrument. (Also see Forbes and Farrar, 1993; 1995; Forbes and Poulin-Dubois, 1997). Moreover, children appear to be ‘captured’ by the participant object not only when the object assumes the role of instrument, but also when it assumes the role of agent. Kersten and Smith (2002) reported that when they are asked to extend a novel verb to an event that involves a new agent, children have difficulty because they tend to focus on the agent, rather than on the action itself. In one of the most striking findings in this field, Maguire and her colleagues (Maguire, Hennon, Hirsh-Pasek, Golinkoff, Slutzky, & Sootsman, 2002) demonstrated that when events are presented as point-light displays, a manipulation that renders the agent essentially invisible, infants successfully extended novel verbs over a change in agents. Importantly, though, they fail to do so when the events are presented under more natural viewing conditions, in which the agent is visible.
This review of the verb-learning literature offers a new perspective on the early developmental trajectories for nouns and verbs. Infants and young children have apparently mastered the principles governing the generalization of nouns: they understand that a novel noun picks out an object or category of objects, and can be extended to other objects of the same kind, whether or not they are engaged in the same action. But mastering the principles governing the generalization of verbs seems to be a different, and more difficult matter: even 3- and sometimes 5-year-olds seem to have difficulty extending a novel verb to other actions of the same kind if the participant objects involved in the action have changed. Put differently, infants and young children are essentially ‘captured’ by the participant objects (both agents and instruments) and have difficulty extending verbs to events in which the participants have changed.

This analysis also offers an intriguing account for infants’ resounding success in some experimental verb learning tasks and preschoolers’ striking failures in others. But another tension remains: We know that when infants produce verbs spontaneously, they extend them beyond particular participant objects. For example, they extend verbs like run to events involving dogs, children and horses, and verbs like eat to events involving ice cream, raisins and cheerios. Why then do they encounter such difficulties extending verbs in just this way in experimental tasks? Put differently, the question is whether infants have indeed mastered the principles governing the generalization of verbs.

In the current experiments, we address these questions, focusing on 24-month-old infants’ generalizations of novel verbs and nouns. We took as our starting point a recently-developed paradigm that has been successful in unveiling word-learning capacities in infants from 12- to 18-months (Booth & Waxman, 2003; in press; Waxman & Booth, 2001; 2003) and
that lends itself especially well to questions concerning noun- and verb-learning capacities in 24-month-old infants.

A brief overview of the task illustrates some of its key features. Infants were first engaged in a familiarization phase, in which they observed a series of videotaped dynamic scenes (e.g., a series of scenes in which man is waving a balloon). At test, we either modified the action while preserving the very same participant (e.g., a man tapping a balloon; Experiment 1) or modified the participant while preserving the very same action (e.g., a man waving a rake; Experiment 2). This design permitted us to consider first, whether infants were sensitive to a change in either the action (e.g., waving) or the participants (e.g., the balloon) in these simple dynamic scenes, and second, whether infants were sensitive to the principles governing the generalization of nouns and verbs. More specifically, we asked whether infants would map a novel verb to an event category (e.g., wave), generalizing this verb to events involving different participants than those with which the verb was introduced (e.g., to waving a rake) (Experiment 1), and whether infants would map a noun to an object category (e.g., balloon), generalizing this noun to events involving different actions than those with which the noun was introduced (e.g., to tapping a balloon) (Experiment 2).

We made several decisions in designing the stimuli. First, to ensure that the actions (like the objects) would be available for inspection throughout the entire scene, we portrayed events in which the actions were continuous (e.g., wave) rather than fleeting (e.g., drop). Second, based on evidence that infants are especially interested in casual events, we presented them with canonically causal scenes, in which an animate agent (e.g., a man) performed a continuous action (e.g., waving) on an inanimate patient (e.g., a balloon). To reduce the number of potential referents of each novel word, the same agent (e.g., the same man) appeared in every scene within
a given trial (see below). To examine the influence of grammatical form on infants' construals of these scenes, we assigned infants randomly to either a Verb, Noun, or No Word condition. Based on evidence that infants have a strong tendency to align causal events with transitive frames (Abbot-Smith, Lieven, & Tomasello, 2004; Bunger, 2007; Fisher, 1996; Lidz, Gleitman & Gleitman, 2003; Naigles, 1990), we chose to present the novel words in transitive frames (e.g., in the verb condition, "The man is larping the balloon"); in the noun condition, “The man is waving the larp”.

One last methodological issue bears mention. Using infants’ looking time as a dependent measure, we derived two sets of analyses, both of which are based on the well-documented assumption that infants prefer to look at a test image that matches the auditory input that they receive, than one that does not match (Kuhl & Meltzoff, 1982; Hirsh-Pasek & Golinkoff, 1996; Spelke, 1976). We designed one set of analyses, based on infants’ aggregated looking times in the test period, to ascertain whether infants’ looking times were influenced by the grammatical form of the novel word they heard. But we also developed a more precise frame-by-frame analysis to depict the time-course underlying infants’ responses to the novel words as the test period unfolded.

Time-course analyses have been the topic of considerable attention in recent years, but in the infant literature they have been based almost exclusively on infants’ responses to familiar words (but see Schafer, 2005). Typically in these studies infants view two simultaneous images (e.g., a dog and a baby) while hearing, for example, ‘Find the baby!’ Fine-grained analyses of infants’ eye movements reveals when they orient their visual attention toward the image that matches the spoken word. In general, 15- to 18-month-old infants initiate a visual response within 300 msec after the familiar word has been uttered in its entirety (Fernald, Pinto, Swingley,
Weinberg, & McRoberts, 1998), but by 18 to 24 months, infants respond more rapidly, in some cases initiating a response even before the entire word has been uttered (Fernald, Swingley, & Pinto, 2001; Swingley, Pinto, & Fernald, 1999). This work is important because it suggests that over the second year of life, infants become increasingly efficient in processing familiar words in continuous speech and mapping them to appropriate referents. What remains unanswered is the time-course underlying infants’ responses to newly-learned words, and to more complex tests of mapping, tasks like the ones presented here that involve not static objects, but objects involved in dynamic event sequences.

The current experiments are considerably more challenging than most involving time-course analysis with infants. To succeed in the current experiments, infants must identify a novel word presented in familiarization, recognize that the novel word presented at test is the same word that was previously presented during familiarization, and map that word to one of two alternative scenes (both of which share important components with the familiarization scenes). Our hope was that a fine-grained depiction of infants’ looking behavior over the course of the test phase would offer insights into the time-course underlying their response to novel words, both nouns and verbs, in this complex word-learning task.

Experiment 1: Mapping Words to Event Categories

The primary goal of this experiment was to discover whether 24-month-old infants are able to focus their attention specifically on an event category (and not the participant objects), whether they are able to map a novel word to an event category, generalizing beyond the particular participant objects involved, and whether this type of mapping is reserved for novel verbs (and not nouns). To address these questions, 24-month-old infants were familiarized to a series of dynamic scenes. In these familiarization scenes, an animate agent (e.g., a man) performed a continuous
action (e.g., waving) on an inanimate patient (e.g., a balloon). At test, infants were presented with two scenes simultaneously: a familiar test scene (e.g., the man waving a balloon) and a novel test scene involving a novel action (e.g., the man tapping a balloon). Notice that both test scenes involved the same two objects (e.g., man; balloon); what varied was the action in which these were involved (e.g., waving vs. hitting). Infants were randomly assigned to either a verb, noun, or no word (control) condition. Infants in all conditions saw precisely the same events; what varied was the auditory information that accompanied them.²

We asked (a) whether 24-month-olds focused sufficiently on the consistent action depicted during familiarization to detect the novel action presented at test, and (b) whether infants’ interpretation of a novel word applied to these scenes was influenced by the grammatical form of the novel word to which they had been exposed.

Participants

Seventy-two 24-month-olds (32 males) with a mean age of 23.84 months (range: 22.14 to 26.05) were included in the final sample. All were recruited from Evanston, IL and its surrounding communities and were acquiring English as their native language. Infants were primarily from Caucasian middle- and upper-middle-class families. Parents completed the MacArthur Short Form Vocabulary Checklist (MCDI): Level II - Form A (Fenson et al., 2000). Infants’ mean production vocabulary was 57 words (ranging from 22 to 99); there were no differences in vocabulary measures among the conditions. We analyzed the data of infants that completed all six test trials. An additional 21 infants were excluded due to: infant fussiness (n = 7), parental interference on at least one trial (n = 3), infant failure to complete all test trials (8) and experimenter error or technical difficulty (n = 3).

Materials
Visual stimuli. We began by creating digitized video recordings of live actors performing a series of continuous actions on inanimate objects. These recordings were edited to create the series of action sequences described in Table 1. These action sequences were approximately 1 min in duration and were presented to infants against a black background, on either side of a 61 in. (155 cm) screen.

Auditory stimuli. A female native speaker of American English adopted an infant-directed speech register to produce the linguistic stimuli described in Table 1. We recorded her utterances in a sound-attenuated booth. These recordings were edited to control timing, duration, amplitude and pitch peaks, etc. and were then synchronized with the visual stimuli. The auditory stimuli, which varied as a function of condition (see below), were presented via a hidden speaker that was centered beneath the visual display. See Appendix B for the full set of stimuli and Table 1 for a representative sample.

Apparatus and Procedure

Infants and caretakers were welcomed into a laboratory playroom. While the infant played freely with toys, the caretaker signed a consent form and completed the MCDI. Next, the experimenter escorted the infant and caretaker into an adjoining test room (14 ft x 10 ft (4.3 m x 3.0 m)) where the infant was seated in an infant-seat, 6 ft (1.8 m) directly in front of the screen. The caretaker, seated either behind or beside the infant, was instructed not to talk or to influence the infant’s attention in any way. The experimenter then moved behind the screen to control the experimental procedure (described below). Throughout the procedure, infants’ looking behavior was recorded (for subsequent coding) with a video camera that was centered above the screen. Sessions lasted approximately 15 min.
The procedure itself included three distinct phases: a familiarization, contrast, and test phase (see Table 1). Each infant completed this three-phase procedure six different times (trials). Each trial involved a different sequence of scenes (e.g., a man waving a balloon, a girl petting a dog). See Appendix A for a complete description of the scenes depicted in each trial. To capture infants’ attention at the beginning of each trial, a still photo of a smiling infant appeared at the center of the video screen for 4 s, accompanied by an audio track of an infant giggling. Trials were presented in one of two random orders, balanced across conditions. The left-right position of the familiar and novel test scenes was counterbalanced across trials.

Infants were randomly assigned to either the Verb, Noun, or No Word condition. Infants in all conditions saw exactly the same video scenes. What varied across conditions was the audio stimulus. See Table 1.

Familiarization phase. (26 s) Infants saw four different examples of a given event category, presented one at a time on alternating sides of the screen. In each scene, the same actor (e.g., a man) performed the same action (e.g., waving) on one of four different objects of the same kind (e.g., four different balloons). The accompanying audio varied as function of condition. For example, in the Verb condition, infants heard, “Look! The man is *larping* a balloon”; in the Noun condition, they heard, “Look! The man is waving a *larp*”; in the No Word (control) condition, they heard “Wow! Look what’s happening here.”

Contrast Phase. (14 s) Next, infants saw two scenes, presented one at a time in the center of the screen. Both scenes involved the now-familiar actor (e.g., the man). In the first contrast scene, this actor performed a novel action on a novel object (e.g., the man *played a saxophone*). On the accompanying audio, the female speaker projected a distinctly disappointed tone; her comments varied as function of condition. In the Verb condition, she referred to the novel action saying, e.g.,
“Uh oh. He’s not *larping* that”. In the Noun condition, she referred to the novel object saying, e.g., “Uh oh. That’s not a *larp*”. In the No Word condition, she offered a general comment (“Uh-oh. Look at that”). In the second contrast scene, infants saw a familiar scene, selected randomly from the original familiarization phase (e.g., the man *waving* a balloon). On the accompanying audio, the female speaker adopted a cheerful tone, exclaiming, for example, “Yay, he is *larping* that” (*Verb* condition), “Yay, that is a *larp*” (*Noun* condition), or “Yay, look at this!” (*No Word* condition).

Notice that the first contrast scene differed from the familiarization scenes in two ways: it depicted a different participant object and a different action. This was a deliberate decision on our part; we wanted to insure that the contrast scene itself could not bias infants’ construal toward either an object or action interpretation. We made this decision because our goal in the contrast phase was not to bias infants toward one interpretation or another, but rather to indicate to infants that not all scenes constituted an appropriate generalization of the novel word. By (disappointedly) introducing a contrast scene and then (cheerfully) re-introducing a familiarization scene, our hope was to demonstrate that there were limits to the correct application of the novel words. For example, by making it explicit that *larp* (whether it was presented as a verb or a noun) could not be applied to a scene in which the man played a saxophone, an infant could reasonably surmise that the word *larp* has a meaning more specific than either *toy* or *thing* or *like* or *hold*. The (cheerful) re-introduction of the familiar scene gave infants an opportunity to reinterpret the meaning of the novel word in light of the information provided in the contrast scene.

Test Phase. (12 s) Finally, infants saw two test scenes, presented simultaneously on either side of the screen. Both scenes featured the same actor (e.g., the man) and the same object (e.g., the balloon) as in familiarization; what varied was the event in which these two were involved. In the

The test phase was divided into two distinct periods (Also see Booth and Waxman, in press; Waxman and Booth, 2001), each designed to address a different aspect of the research question. First, in a baseline period, we examined infants’ baseline preference for the two test scenes. Second, in a response period, we examined infants’ response in each condition to an explicit probe.³

Baseline period (4 sec). Infants in all conditions saw the two test scenes accompanied by the same audio (“Now look. They’re different”). At the close of the baseline period, the screen went blank (.33 s).

Response period (8 sec). The two test scenes then reappeared, but at this point, the accompanying audio varied as a function of condition. In the Verb condition, the test questions probed infants’ mapping of the novel verb that had been introduced during familiarization (e.g., “Which one is he larping?”). In the Noun condition, the test question probed infants’ mapping of the novel noun that had been introduced during familiarization (e.g., “Which one is a larp?”).¹ In the No Word condition, the test question contained no novel word (e.g., “What do you see now?”). This served as a control, providing a metric against which to compare performance in the Noun and Verb conditions.

Coding

The videotaped sessions were coded off-line with sound removed to ensure that coders, who were blind to the experimental hypotheses and to the right-left position of the novel and familiar test scenes, were also blind to condition assignment. Coders identified for each frame

(30 frames per second), whether the infant’s eyes were oriented to the left scene, the right scene, or neither scene. This frame-by-frame coding permitted us to create two types of measures.

First, we created a record of the time-course of infants’ looking behavior throughout the test phase. We calculated for each infant on each frame, the proportion of looks directed toward the familiar test scene (total number of looks devoted to the familiar test scene, divided by the total number of looks to the familiar and to the novel test scene) across trials. We then computed an average, across infants for each frame in each condition, to produce a high-resolution record of the time-course of infants’ looking behavior in each condition.

Second, for the purposes of statistical analysis, we selected two ‘windows’, one from the baseline period, and another from the response period. The response window began with the onset of the novel word and ended three seconds later. The baseline window included the last 3 seconds of the baseline period. Within each window, we calculated for each infant and each trial, the mean proportion of looking time devoted to the familiar test scene (total time accumulated looking toward the familiar test scene divided by the total time accumulated looking toward both the familiar and novel test scenes).

A primary coder coded all of the infants. A second coder independently coded nine infants, three per condition. Agreement between coders in both the baseline and response windows (computed for each trial and then averaged across trials) was 91.4% (Cohen’s kappa = .85).

Predictions

Baseline Period: If infants are sensitive to the consistent action portrayed in the familiarization scenes, then they should detect the novel action portrayed in the novel test scene, and should therefore reveal a strong baseline preference for the novel test scene.
Response Period: If infants distinguish between novel words presented as verbs versus nouns, and if they recruit this distinction in establishing word meaning, then performance in the response period should vary systematically as a function of condition:

If infants expect that verbs refer to categories of events, then during familiarization they should map the novel verb (e.g., larping) to the event category (e.g., waving) and not to the objects undergoing the action (e.g., balloons). If this is the case, then in the response to the test question (“Which one is he larping?”), they should search for the familiar event, directing their attention away from the novel test scene (which depicts a novel event) and toward the familiar test scene (which depicts the familiar event).

If infants expect that nouns refer to categories of objects, then during familiarization they should map the novel noun (e.g., larp) to the object category (e.g., balloon) and not to the action in which it was engaged (e.g., waving). If this is the case, then in response to the test question (e.g., “Which one is a larp?”), they should search for the familiar object. Note that because the familiar object appears in both the novel and familiar test scenes, the novel noun applies correctly applied to either. Therefore, infants could reasonably maintain their focus on the (favored) novel test scene.

Finally, because in the No Word condition, the response question contains no novel word (e.g., “What do you see now?”), performance in this condition should not change from the baseline to the response period.

Results

Figure 1 displays the continuous time-course of infants’ looking behavior in each condition throughout the test phase. A glance at this timeline offers several impressions. First, during the baseline period, infants in all conditions reveal a strong preference for the novel test scene. This suggests that 24-month-olds in all conditions were sensitive to the actions portrayed
throughout the dynamic familiarization scenes, and therefore detected a change in the event, even when the very same objects are involved. Second, during the response period, performance among the conditions began to diverge, with infants in the Noun and No Word control conditions maintaining their strong preference for the novel test scene, but those in the Verb condition directing increasingly more visual attention toward the familiar test scene. This suggests that infants’ construals of these dynamic scenes were indeed influenced by the novel words with which they were described. Moreover, Figure 1 indicates that infants direct their attention efficiently, with performance among the conditions pulling apart in the response window, just after the onset of the novel word.

To further consider whether and how the introduction of novel words affected infants’ construals, we computed the proportion of looking time devoted to the familiar test scene in each condition, and submitted this to an analysis of variance with condition (3: Verb, Noun, No Word) as a between-participants factor and window (2: baseline, response) as a within-participants factor. This analysis revealed a main effect for condition, $F(2, 69) = 5.22, p < .01, \eta^2 = .11$; infants in the Verb condition looked reliably longer at the familiar test scene ($M = .43$) than did those in the Noun and No Word conditions ($M = .38$ and .38, respectively). There was also a main effect for window, $F(1, 69) = 14.78, p < .0001, \eta^2 = .13$; infants looked reliably longer at the familiar scene in the response window ($M = .42$) than in the baseline window ($M = .37$). These main effects were qualified by a window x condition interaction, $F(2, 69) = 8.31, p < .01, \eta^2 = .15$. An analysis of simple main effects revealed that during the baseline window, there were no reliable differences among the conditions, $F(2, 69) = .47, p = .63; \eta^2 = .01$. As predicted, infants in all conditions exhibited a strong preference for the novel test scene, all t’s > 6.1, all p’s < .0001. However, during the response window, the predicted differences among the conditions
emerged, $F(2, 69) = 11.31, p < .0001; \eta^2 = .25$. Post hoc analyses of this effect revealed that infants in the Verb condition devoted a larger proportion of looking time to the familiar test scene than did infants in either the Noun or the No Word conditions, Tukey test, both p’s < .05. Infants in the latter two conditions maintained their preference for the novel test scene, both p’s < .001, but those in the Verb condition showed no such preference. It is important to notice that although performance in the Verb condition did not differ from the level of responding expected by chance (50%), within the context of the current experiment this should not be considered a null effect. There are two reasons for this assertion. First, in the current experiment, 50% does not constitute baseline performance. Instead, there is a strong baseline preference for the novel scene. Second, the theoretical issue under investigation is whether infants’ performance changes as a result of the introduction of a novel verb or noun.

We therefore used planned comparisons to compare infants’ performance in the baseline and response windows in each condition. As predicted, infants in the No Word condition performed comparably in the baseline and response windows ($M = .38$ and .38, respectively), $F(1, 69) = 0.01, p = .97; \eta^2 < .01$. This is an important finding because it indicates that when no novel word is presented, infants’ preference for the novel test scene persists throughout the response window. Infants in the Noun condition performed similarly ($M = .37$ and .39, respectively), $F(1, 69) = 1.27, p = .26; \eta^2 = .02$, documenting that infants do not shift their attention in response to any novel word. Instead, and as predicted, this shift in attention from the baseline to the response window was evident only with the presentation of a novel verb, ($M = .49$ and .37, respectively), $F(1, 69) = 30.12, p < .0001; \eta^2 = .30$.

We next asked whether the distinct patterns of performance observed within each condition were reflected in the behavior of most infants within that condition. We tallied the
number of infants in each condition whose mean looking time to the familiar scene in the response window (averaged over all trials) exceeded that in the baseline window. In the Verb condition, 79% of the infants (19 out of 24) looked longer at the familiar test scene in the response than the baseline window, a distribution that differed from chance, $\chi^2(1) = 8.167$, $p < .005$. In contrast, the number of infants displaying this pattern in the Noun (13 out of 24) and No Word (12 out of 24) conditions did not differ from chance, both $p's > .50$. Thus, non-parametric analyses echo analyses based on group means, suggesting that the mean patterns within each condition characterize well the behavior of its individual participants.

Finally, we considered the time-course underlying infants’ response. To identify the point at which performance in the three conditions began to diverge, we conducted a series of more fine-grained analyses, dividing the 3 second response window into smaller windows (or ‘bins’), each 200 msec (6 frames) in duration. We submitted the data from each bin to an ANOVA with condition (3: Verb, Noun, No Word) as a between-participants factor, using the proportion of looks devoted to the familiar test scene on each of the six frames within that bin as the dependent variable. These analyses revealed that performance among the conditions diverged within the first 200 msec bin, $F(2,15) = 20.19$, $p < .0001$, $\eta^2 = .99$, with infants in the Verb condition devoting more attention to the familiar test scene than infants in either the Noun or No Word conditions. This difference was maintained consistently throughout the response window, with the exception of a single bin from 1000-1200 msec.

Discussion

The results of this experiment offer three insights into the word-learning capacities of 24-month-old infants. First, infants’ strong novelty preferences in the baseline period reveal that infants in all conditions were quite sensitive to the consistent events that were portrayed in the
dynamic familiarization scenes and readily detected a change in the event at test. Second, infants’ performance in the response period reveals that they distinguish between novel words presented as verbs versus nouns, and recruit this distinction in mapping words to meaning. They consider that verbs, but not nouns, map to event categories. Third, the time-course underlying infants’ response to novel words is swift: differences among the conditions begins to diverge just after the onset of the novel word. We return to this matter in the General Discussion.

The results also raise some intriguing questions. For example, we have demonstrated that 24-month-olds map novel verbs specifically to events, and not to objects, but the breadth of their representation of verb meaning is still an open question. Does their representation of verb meaning include information about the particular object(s) involved in the event? On this view, infants may have taken the novel verb *larp* to refer to the specific category of *balloon-waving events*. Or does their representation permit them to abstract over the participant objects? On this view, infants may have taken the novel verb *larp* to refer to the more general category of *waving events*. At issue is whether infants map novel verbs like *larping* narrowly (e.g., to *balloon-waving events*) or more abstractly (e.g., to *waving events*). The evidence from Experiment 1 cannot address this issue because although infants in the verb condition alone directed their attention toward the test scene in which the familiar action was portrayed, that scene involved the familiar object as well. What remains unanswered is whether 24-month-old infants are also willing to extend a novel verb beyond the action-object pairing on which it was introduced. We address this issue in Experiment 2.

The current results also offer insights into infants’ interpretation of novel nouns. Previous work has documented that infants as young as 14 months of age interpret novel count nouns as referring specifically to categories of objects, and not to their surface properties (e.g., color,

The results of the current experiment take us one step further: Although infants in the current experiment noticed the categories of action depicted during familiarization (as witnessed by their novelty preferences in the baseline window), they did not consider these actions to be candidates for noun meaning (as witnessed by their continued novelty preferences in the response window).

Performance in the Noun condition also sheds light on the breadth of infants’ representations of noun meaning. We have argued that because both the novel and familiar test scenes depicted a member of the familiar object category (e.g., balloon), either could constitute a correct extension of the novel noun. But notice that this argument goes through only if infants successfully uncouple the participant object from the action in which it is engaged when assigning meaning to a novel noun. If they had failed to do so, then in the response window, infants in the Noun condition should have shifted their attention toward the familiar test scene, seeking to preserve the same object-action pairing that they observed in familiarization. The fact that infants did not do so, but instead maintained their focus on the novel test scene, is consistent with the view that their representation of noun meaning is sufficiently abstract to include instances of an object category, independent of the action in which it is engaged. Additional evidence would be required to test this possibility, and we turn to this issue in the General Discussion.

Experiment 2: Mapping Words to Object Categories

Experiment 2 was designed to clarify further the breadth and precision of 24-month-old infants’ interpretations of novel words presented as verbs and nouns. The design was identical to that of Experiment 1, except for one crucial modification in the test scenes. Infants saw the very same familiarization scenes as in Experiment 1 (e.g., a man waving a balloon), the very same contrast texture) (Booth & Waxman, 2003; in press; Waxman, 1999; Waxman & Booth, 2001). The

scene (e.g., a man playing a saxophone) and the very same familiar test scene (e.g., a man waving a balloon); what differed was the novel test scene. In Experiment 2, the novel feature of the novel test scene was the object (e.g., the man waving a rake), whereas in Experiment 1, the novel feature had been the action (e.g., the man tapping the balloon). Infants were assigned randomly to a Verb, Noun, or No Word condition.

Following the same logic as in Experiment 1, we asked (a) whether 24-month-olds focused sufficiently on the consistent object depicted during familiarization to detect the novel object presented at test, and (b) whether infants’ interpretation of a novel word applied to these scenes was influenced by the grammatical form of the novel word to which they had been exposed.

Method

Participants

Seventy-two 24-month-olds (37 males) with a mean age of 24.08 months (range: 21.64 to 26.25) were included in the final sample. All participants were recruited from Evanston, IL and its surrounding communities and were acquiring English as their native language. Infants were from primarily Caucasian middle- and upper-middle-class families. Parents completed the MCDI: Level II - Form A (Fenson et al., 2000) and infants’ mean production vocabulary was 52 words (ranging from 4 to 98) and did not differ among the three conditions. We analyzed the data of infants that completed all six test trials. An additional 25 infants were excluded due to: infant fussiness (n = 13), parental interference on at least one trial (n = 3), infant failure to complete all test trials (6), or experimenter error/technical difficulty (n = 3).

Materials

The audio and visual materials were identical to those in Experiment 1, with one exception in the visual materials. In Experiment 1, the novel test scene had depicted a novel
action (e.g., the man tapping the balloon); in contrast, in Experiment 2, the novel test scene depicted a novel object (e.g., the man waving a rake). As in Experiment 1, participants in all conditions viewed the same video sequences; the accompanying audio input varied as a function of their condition assignment. See Table 2 for a sample representation of the sequence and Appendices A & B for a complete set of stimuli.

Apparatus and Procedure

This was identical to Experiment 1.

Coding

This was identical to Experiment 1. Agreement between coders for the selected windows, calculated for nine infants, three per condition was 93.5% agreement (Cohen’s kappa = .88).

Predictions

The predictions follow the same logic as those in Experiment 1.

Baseline period: If infants are sensitive to the participant objects involved in these dynamic action scenes, then they should detect the novel participant object presented in the novel test scene and as a result, infants in all conditions should reveal a baseline preference for the novel test scene.

Response period: We predicted that performance in the response period would vary systematically as a function of condition. Recall that in this experiment, the familiar object (e.g., balloon) appears only in the familiar test scene, and the familiar action (e.g., waving) now appears in both the novel and familiar test scenes.

If infants expect that nouns map onto categories of objects, independent of the actions in which the objects are engaged, then in response to the test question, infants in the Noun condition should direct their attention toward the familiar test scene because it is only here that the infant will find a member of the object category presented during familiarization (e.g., a balloon).
If in their representations of verb meaning, infants fuse an action with its participant objects, then they should map novel verbs narrowly (e.g., taking *larp* to refer to balloon-waving events) and as a result, in response to the test question (“Which one is he *larping*?”) infants should move their attention reliably away from the novel test scene (which depicts a novel participant object) and toward the familiar test scene (which depicts the familiar participant object). Yet if in their representation of verb meaning, infants are able to uncouple the action from its participant objects, then they should map novel verbs more broadly, generalizing the verb to include other instances of the same action, despite a change in participant objects. (e.g., taking *larp* to refer to waving events). As a result, infants in the Verb condition could reasonably maintain their focus on the novel test scene in response to the test question.

Finally, because in the No Word control condition, the response question contains no novel word (e.g., “What do you see now?”), infants in this condition should exhibit no change from the baseline to the response window.

Results

An examination of Figure 3 indicates that during the baseline period, infants in all three conditions reveal a strong preference for the novel test scene, suggesting that they detected the novel object presented at test in the current experiment, just as they had detected the novel action in Experiment 1. Also as in Experiment 1, performance among the conditions began to diverge in the response period with the onset of the novel word. Importantly, however, in this experiment, it was infants in the Noun condition that shifted their attention toward the familiar test scene.

As in Experiment 1, we computed the proportion of looking time devoted to the familiar test scene in each condition, and submitted this to an analysis of variance with condition (3: Verb, Noun, No Word) as a between-participants factor and window (2: baseline, response) as a
within-participants factor, and used this to test our predictions. See Figure 4. This analysis revealed a main effect for condition, $F(2, 69) = 8.09$, $p < .0001$, $\eta^2 = .15$; this time, infants in the Noun condition looked reliably longer at the familiar test scene ($M = .46$) than did those in the Verb and No Word conditions ($M = .40$ and .37, respectively). There was also a main effect for window, $F(1, 69) = 16.21$, $p < .0001$, $\eta^2 = .15$; infants looked reliably longer at the familiar scene in the response window ($M = .44$) than in the baseline window ($M = .38$). The condition by window interaction did not reach statistical significance, $F(2, 69) = 2.22$, $p = .12$; $\eta^2 = .04$.

Following the logic of Experiment 1, we used analyses of simple main effects to test our predictions more directly. These analyses revealed that during the baseline window, there were no reliable differences among the conditions, $F(2,69) = 1.12$, $p = .33$; $\eta^2 = .03$. As predicted, infants in all three conditions exhibited clear preferences for the novel test scene, all t’s > 5.0, all p’s < .0001. Also as predicted, in the response window, reliable differences among the conditions emerged, $F(2,69) = 8.04$, $p < .01$; $\eta^2 = .19$. Infants in the Noun condition devoting a greater proportion of looking time to the familiar test scene than did infants in either the Verb or No Word conditions, Tukey tests, both p’s < .05. There was no difference between these latter two conditions. Moreover, infants in these two conditions maintained their preference for the novel test scene, both p’s < .001, but those in the Noun condition did not.

As in Experiment 1, we used planned comparisons to compare infants’ performance in the baseline and response windows in each condition. As predicted, infants in the No Word condition performed comparably in the baseline and response windows ($M = .36$ and .39, respectively), $F(1,69) = 1.70$, $p = .20$; $\eta^2 = .02$. This suggests that in the absence of a novel word, infants’ preference for the novel scene persists through the response window. The same was true of infants in the Verb condition ($M = .38$ and .42, respectively), $F(1,69) = 2.67$, $p = .11$; $\eta^2 = .04$.
This is important because it reveals that a shift away from the novel scene is not motivated by the presentation of any novel word. Instead, and as predicted, this shift in attention from the baseline to the response window was evident only in the Noun condition, ($M = .40$ and $.51$, respectively), $F(1,69) = 16.28$, $p < .0001; \eta^2 = .20$.

A nonparametric analysis of individual infants’ patterns of performance revealed that the distinct patterns observed within each condition were reflected in most infants within that condition. As in Experiment 1, we tallied the number of infants in each condition whose mean looking time to the familiar scene in the response window exceeded that in the baseline window. In the Noun condition, 75% of the infants (18 out of 24) looked longer at the familiar test scene in the response than the baseline window, $\chi^2(1) = 6.304$, $p < .05$. In contrast, in both the Verb and No Word conditions, 54% of the infants (13 out of 24) displayed this pattern, both p’s $> .50$.

Finally, as in Experiment 1, we considered the time-course underlying infants’ performance in the response window. To identify the point at which performance in the three conditions began to diverge, we divided the response window into smaller bins, each 200 msec (6 frames) in duration. We submitted the data from each bin to an ANOVA with condition (3: Verb, Noun, No Word) as a between-participants factor. Performance among the conditions began to diverge between 200 and 400 msec, $F(2,15) = 43.20$, $p < .0001, \eta^2 = .83$, with infants in the Noun condition devoting more attention to the familiar test scene than infants in either the Verb or No Word conditions, a difference that maintained consistently throughout the duration of the response window.

Discussion

The results of this second experiment bolster the results of the first, but also offer new information concerning infants’ representations of novel words. Infants in all conditions were
sensitive to the participant objects portrayed in the dynamic scenes presented during
familiarization and readily detected the change in participant objects in the baseline test period, just as they had detected the change in action in Experiment 1. In addition, infants’ differential performance in the response period offers insights into their representations of the meaning of both novel verbs and nouns.

Consider first the evidence concerning infants’ representations of novel nouns. Infants in the noun condition shifted their visual attention reliably from the novel test scene during the baseline window toward the familiar test scene during the response window. This suggests that their representation of noun meaning is sufficiently precise to permit them to map novel nouns specifically to object categories, abstracting over the actions in which participant objects are engaged. This result is consistent with evidence that by 14 months of age, infants map nouns specifically to object categories (Waxman, 1999), abstracting over surface properties (e.g., color, texture) of those objects (Booth & Waxman, 2003; in press; Waxman & Booth, 2003). But the current result also takes us one step further, offering the first evidence that at 24 months, infants’ focus on object categories in noun-learning is sufficiently abstract to permit them to abstract over the actions in which participant objects are engaged, and sufficiently strong to persist even in the presence of dynamic action scenes, and even when a salient action is available as a candidate meaning.

Performance in the verb condition also sheds some additional light on the breadth of infants’ representations of verb meaning. Recall that in this experiment, the familiar and novel test scenes portrayed the very same event types, differing only in event participants. Because both test scenes depicted an instance of the familiar action (e.g., waving), in principle either could constitute a correct extension of the novel verb. But this argument goes through only if
infants successfully uncouple the action from its participant objects when assigning verb meaning. If instead infant’s verb meanings included both the event type and the event participants, then in the response window, they should have shifted their attention toward the familiar test scene, seeking to preserve the same object-action pairing that they observed in familiarization. The fact that infants in the Verb condition did not shift their attention, but instead maintained their focus on the novel test scene, is consistent with the possibility that their representation of verb meaning is sufficiently abstract to include instances of an action that involve different participants than the ones with which the verb was introduced. Additional evidence would be required to test this possibility, and we turn to this issue in the General Discussion.

General Discussion

The results of these two experiments make three strong contributions which, taken together, begin to resolve empirical and theoretical concerns that have surfaced within the verb-learning literature. First, after 24-month-old infants view a series of dynamic scenes, they rather readily detect a change in that scene, whether the change involves a novel action (Experiment 1) or a novel object (Experiment 2). Clearly, then, infants are not captivated so thoroughly by the participant objects that the actions in which they are involved go unnoticed. Infants’ sensitivity to both actions and objects in these dynamic scenes suggests that in principle, both are available as potential referents for novel words. Second, infants’ performance in the response window reveals that this is in fact the case: In the context of hearing a novel verb, 24-month-old infants direct their attention to the actions depicted in these dynamic scenes, but in the context of hearing a novel noun, they direct their attention to the participant object. Third, their response to the novel word is surprisingly swift, evident within milliseconds of its onset. Thus, 24-month-old infants are able to (a) distinguish
actions from their participant objects in dynamic scenes, (b) distinguish novel verbs from nouns, and (c) treat these conceptual and linguistic distinctions as relevant to establishing the meaning of novel words.

Looking further into the time-course data. Infants’ almost instantaneous response to the presentation of novel words is especially intriguing. The rapidity of their response is largely consistent with evidence that infants as young as 18 to 24 months are able to initiate a rapid eye-movement in response to a familiar word, sometimes even before the word has been uttered in its entirety (Fernald, et al., 2001; Fernald & Hurtado, 2006; Swingley, et al., 1999). The experiments reported here reveal that infants are also able to initiate a rapid response when they are presented with novel words (see also Halberda, 2006; Schafer, 2005). Moreover, to the best of our knowledge, this is the first demonstration of the time-course underlying infants’ eye-movement response when presented with dynamic scenes, as opposed to static displays. Infants’ success in this task, and the rapidity of their response, serve as testimony to how effectively the current design supported infants’ word learning. It reveals that over the course of the familiarization and contrast phases, infants mapped novel words with sufficient success to permit them to launch a rapid eye-movement response at test.

We suspect that the swift time-course underlying infants’ response also reflects the highly structured nature of the current design. Recall that even before the response window of any given trial opened, infants had already been familiarized repeatedly to the novel word (during the familiarization phase). They also had an opportunity to observe both the novel and familiar test scenes in their precise locations on the screen (during the baseline window of the test phase). Thus, even before the test question was posed (in the response window of the test
phase), infants had considerable information to support their efforts to map the novel word to the relevant test scene.

In addition, recall that infants in the current experiments participated in six different trials, each featuring its own particular novel word and scenes, but each conforming to the very same design structure. This design feature raises the intriguing possibility that infants’ responses may become more rapid over the course of their six trials. To consider this possibility, we went back to inspect the data further, analyzing the time-course underlying infants’ responses on their first two, middle two, and final two trials. In both experiments, infants did indeed respond more rapidly on later, than on earlier trials. We are currently pursuing this intriguing observation (Norbury, Arunachalam & Waxman, 2009).

Considering the breadth of meaning that infants assign to novel verbs and nouns. The current experiments also shed light on the precision and breadth of infants’ expectations for the meaning of novel verbs and nouns. The results of Experiment 1 document that when seeking to establish the meaning of a novel verb, 24-month-old infants home in on an action (e.g., waving). Recall that in response to the test question (“Which one is he larping?”), infants in the verb condition directed their attention away from the test scene depicting a novel action (e.g., tapping a balloon) and toward the test scene depicting the familiar action (e.g., waving a balloon). What this experiment left unresolved was whether 24-month-olds interpreted the novel verbs narrowly, restricting their application to the same action-object pairing on which the verb had been introduced in familiarization (e.g., to balloon-waving events) or whether their representations are more abstract, permitting them to apply a recently-acquired verb to events that involve different participant objects (e.g., to waving events). We have noted that performance in the verb condition of Experiment 2 offers a hint that infants’ representations may be abstract. We reasoned that if
infants had mapped the novel verbs narrowly (e.g., taking *larp* to refer to balloon-waving events), then in response to the test question (“Which one is he *larping*?”), infants should have directed their attention away from the test scene involving a novel object (e.g., waving a rake) and toward the test scene that preserved the same action-object pairing with which the verb had been introduced (e.g., waving a balloon). But this was not the case; infants in the verb condition of Experiment 2 did not re-direct their attention. The fact that they maintained their focus on the novel test scene (e.g., waving a rake) is consistent with the possibility that the meaning they had assigned was sufficiently abstract to permit them to extend the novel verb beyond the particular action-object pairing with which it had been introduced (e.g., to waving events, whether the object being waved was a balloon or a rake).

Notice, however, that infants’ performance in this experiment cannot resolve with certainty whether their interpretations of verb meaning are indeed abstract. After all, infants in the verb condition of Experiment 2 performed identically to those in the no word control condition. We therefore interpret these results with some caution, noting that the current experiments cannot resolve with certainty whether infants mapped the novel verbs abstractly (e.g., to waving events) or narrowly (e.g., to waving balloons). However, in more recent work, we have pursued this question directly. To do so, we have modified the test scenes, pitting a scene involving a familiar action and novel object (e.g., waving a fork) against one involving a familiar object and novel action (e.g., tapping a balloon). The evidence reveals that by 24 months, infants’ interpretations of verb meaning are indeed abstract: they successfully mapped the verb to the familiar action-novel object pairing (e.g., waving a fork) (Arunachalam & Waxman, 2008; see Piccin and Waxman, 2008 for additional evidence with 3-year-olds).
Infants' performance in the novel noun condition can be interpreted using the same logic as we have outlined above for verbs. Taken together, the results of Experiments 1 and 2 suggest that when seeking to establish the meaning of a novel noun, infants direct their attention to objects (e.g., balloons), and not necessarily the particular actions in which they participate. This result in itself is not surprising. After all, there is evidence that infants as young as 14 months map nouns specifically to object categories (Waxman, 1999), and that in doing so they abstract over surface properties of those objects including color and texture (Booth & Waxman, 2003; in press; Waxman & Booth, 2003). But the current results take us one step further to reveal that at 24 months, infants’ focus on object categories in noun-learning is sufficiently strong to persist even in the presence of dynamic action scenes, and even when a salient action is available as a candidate meaning.

Reconciling infants’ success with preschoolers’ failures. How can we reconcile 24-month-old infants’ success in mapping verbs, when 3- and even 5-year-old children have encountered such difficulty in similar experimental tasks (Behrend, 1990, 1995; Brown, 1957; Forbes & Farrar, 1995; Imai, Haryu, & Okada, 2002, 2004, 2005; Kersten & Smith, 2002)? Could it be that infants’ success in verb learning is tied rather closely to contexts, like those presented here, in which transitive frames accompany clearly causal events? After all, our decision to present transitive frames and causal events was based on evidence that infants tend to align these (Bunger, 2007; Fisher, 1996; Lidz, Gleitman & Gleitman, 2003). Notice, however, that this particular pairing of frames and events does not, in and of itself, guarantee successful verb learning, as witnessed by 3-year-old children’s difficulty mapping (transitive) verbs to causal events in Imai, et al. (2005). In addition, infants’ success in verb learning does not appear to be limited to such pairings. In a task modeled closely after the one used here, 23-month-old infants successfully mapped intransitive verbs to non-causal one-participant actions (Bernal,

Lidz, Millotte & Christophe, 2007; see also Lidz, Waxman, Bunger and Leddon, 2006; Lidz, Waxman and Baier, 2008). Apparently, then, infants’ success in verb learning is neither guaranteed by, nor restricted to, transitive-causal pairings.

We suspect that 24-month-olds’ success in the current experiments is related, at least in part, to issues of experimental design. In our view, these design issues are more than mere methodological niceties. Instead, they reflect the distinct informational requirements underlying the successful acquisition verbs (Gleitman, 1990). There is considerable evidence that successful verb learning requires different, and more extensive, information than that required for noun learning (Gillette, et al., 1999; Snedeker & Gleitman, 2004; Piccin & Waxman, 2007a). Infants’ success in the current experiments suggests that there is something present in the current design, but absent in others, that provides infants with just the sort of information that they require for verb learning. But what might that something be? To answer this question, we consider design features of both the test and familiarization/contrast phase.

Consider first the structure of the test trials presented in the current and previous investigations. In the experiments reported here, the test trials included one familiar scene and one novel scene. The novel scene portrayed either a novel action (Experiment 1) or a novel participant object (Experiment 2). In other investigations, the structure of the test trials was more demanding; both test trials included novel scenes and children were required to choose between one novel scene (portraying a familiar action but a novel object) and another (portraying a familiar object but a novel action) (Imai et al., 2002; 2004; 2005; Kersten & Smith, 2002; Piccin & Waxman, 2007b). Our decision to simplify the test trials was motivated by our goal: We sought to uncover infants’ early capacities in verb learning.
Infants’ success in this task, important in its own right, also raises the question of whether 24-month-olds might also succeed if they were presented with the more demanding testing events. For example, after being familiarized to scenes in which a man is waving a balloon, are infants able to choose between two novel scenes, either a man waving a rake (novel object) or a man tapping a balloon (novel action)? As we have discussed above, even in this more stringent task, 24-month-olds’ representations of verb meaning are sufficiently abstract to permit them to extend a novel verb to an action, generalizing beyond the particular participants with which it has been introduced (Arunachalam & Waxman, 2008; Lidz, Waxman & Baier, 2008; Piccin & Waxman, 2007b; Waxman, in press).

It is also worth highlighting other design features that distinguish the current from previous investigations on infant verb learning. We embedded two sources of information within the familiarization and contrast phases. In the familiarization phase, infants observed multiple versions of a given scene (e.g., a man waving different balloons), accompanied by multiple presentations of the novel word within its designated grammatical context. In the contrast phase, they received explicit evidence concerning the limits on the range of application of the novel word. Each of these factors -- multiple exemplars and contrast -- has a facilitative effect in word learning (Au & Markman, 1987; Booth & Waxman, in press; Bradlow & Bent, 2008; Brown & Hanlon, 1970; Clark, 1988, 1997; Hall & Belanger, 2005; Klibanoff & Waxman, 2000; Namy & Gentner, 2002; Waxman & Booth, 2003; Waxman & Markow, 1995). We included these factors in our design because our goal was to uncover infants’ early representations of verb meaning. The fact that 24-month-old infants were successful in verb learning suggests that these factors, jointly present in the current experiments but absent in others (Behrend, 1990, 1995; Forbes &
Farrar, 1995; Imai, Haryu, & Okada, 2005; Kersten & Smith, 2002), may have been instrumental.

In future work, it will be important to test the contribution of each of these factors directly. Although investigations with infant learners are currently underway (Lidz, Waxman, Bunger & Leddon, 2006), recent work with 3-year-old children indicates that each of these factors contributes to successful verb learning (Piccin & Waxman, 2007b; Waxman, in press). These results are instructive because, as we have pointed out, 3-year-olds often encounter difficulty when they are required to extend the verb to actions involving participant objects that differ from those with which the verb had been introduced. Piccin and Waxman (2007b) replicated this oft-reported effect: when 3-year-olds were provided with neither multiple exemplars nor explicit contrast, they learned nouns but failed to learn verbs. Notice that this condition parallels the design of Imai and her colleagues and produces results that echo theirs with children at the very same age. This pattern – success with nouns and difficulty with verbs -- fits well with the argument that the requirements underlying verb learning are steeper than those underlying noun learning (Gleitman et al., 2005). However, Piccin and Waxman showed that when 3-year-olds were offered both multiple exemplars and explicit contrast, they successfully learned verbs as well as nouns. Notice that this condition parallels the design of the experiments reported here and produces results in 3-year-olds that echo precisely our results with 24-month-olds. Moreover, when 3-year-olds were offered only one these source of support (either multiple exemplars or contrast), it became clear that each factor exerted an independent contribution toward success in verb-learning.

Taken together, these findings reveal the impact of experimental design on our understanding of verb acquisition, in particular, and underscore the empirical and theoretical
importance of considering how various sources of information, independently or in concert, contribute to the acquisition of word meaning. In future work, it will also be important to identify which other syntactic environments (e.g., intransitive frames; verbs appearing with pronouns) and which other kinds of events (e.g., punctate rather than continuous events; events with different numbers of participants and different temporal or causal characteristics) also enable infant verb learning (Bunger & Lidz, 2008; Childers & Tomasello, 2001; Echols & Marti, 2004; Fisher, Hall, Rakowitz, & Gleitman, 1994; Lidz, Bunger, Leddon, & Waxman, 2006; Lidz, Waxman & Baier, 2008; Wagner & Carey, 2003; Viau 2007).

In closing. The current experiments begin to reconcile what, until now, has been a large and largely unexplained gap between infants’ well-documented ability to acquire verbs in the natural course of their lives and their rather surprising failures to do so in many laboratory-based tasks. At a descriptive level, we document that at 24 months, a point at which many infants naturally begin to add new verbs in increasing number to their lexicons, they also successfully learn new verbs in a laboratory-based task. At a more theoretical level, we document that 24-month-olds’ representations of verb meaning are sufficiently precise to permit them to extend novel verbs appropriately to the actions depicted in dynamic scenes and not to their participant objects. Together, these findings suggest that it is time to move beyond asking whether infants can or cannot represent verb meanings, and to consider instead the conditions that support the acquisition of verb learning in infants and young children.
References

Author Note

Sandra R. Waxman and Irena E. Braun, Department of Psychology, Northwestern University; Jeffrey L. Lidz, Department of Linguistics, University of Maryland; Tracy Lavin, Canadian Council on Learning, Vancouver, British Columbia, Canada.

This research was supported by National Institutes of Health (NIH) grant HD30410 to the first author. We are grateful to the infants and caretakers who participated in this study. We are also indebted to M. Chernov, P. Henry, D. Oleszczuk, and C. Tambellini for coding the infant data, to A. Booth, S. Hespos, D. Medin, H. Norbury, P. Vishton, and A. Weisleder for considerable contributions to design, analysis and interpretation, and to S. Arunachalam and E. Leddon for their editorial insights.

Correspondence concerning this article should be addressed to Sandra R. Waxman, Northwestern University, Department of Psychology – Swift Hall, 2029 Sheridan Road, Evanston, IL 60208.
Footnotes

1 Although the participants in an event must be abstracted over in defining the event category labeled by a verb, many individual verbs do exert selectional restrictions on the range of potential participants. For example, to qualify as a breaking event, something must be broken; consequently, the object of the verb ‘break’ must refer to something that can be broken (e.g., a solid object). This fact -- that certain events require participants of a particular kind -- does not alter the fact that in assigning the meaning of a verb, we abstract over participants.

2 In the design of this experiment, novel words were embedded within two different sentence frames. In the Verb condition: “Which one is he/she Xing?” and “Where is he/she Xing something?” In the Noun condition: “Which one is a X?” and “Where is a X?” Within each condition, infants heard half of the novel words presented in one frame, and the other half in the other frame. The frames were counterbalanced over trials and presented in alternation. Preliminary analyses revealed no differences in performance in either condition as a function of these constructions. We therefore collapse across them in reporting the results of Experiment 1 and 2.

3 Within the response period, the response window opened with the onset of the novel word because our interest is in infants’ response to the presentation of novel words. The response window closed 3 sec later because at precisely this point, a new test question was initiated. We did not analyze infants’ response to this second test question because our impression, confirmed by initial analyses, revealed that by this point in a trial, infants’ interest had waned considerably in all three conditions, and that as a result, their responses to the 2nd test question offered no discriminative value.

4 Within the baseline period, we selected the last three seconds arbitrarily as our window. In fact, the results of all analyses are identical, whether we selected the first three seconds, the last three seconds, or the full four seconds of the baseline period as our ‘window.’

5 Our decision to focus the analysis on the test phase (including both the baseline and response windows) was motivated by two factors. First, an analysis of infants’ looking time during the familiarization phase revealed no differences among the conditions in either Experiment 1 or 2. This insures that the attention infants devoted to the familiarization stimuli was comparable across conditions. Second, an analysis of infants’ looking time during the baseline period of the test phase also revealed no differences, with infants in all conditions and in both experiments revealing strong novelty preferences. Taken together, these two outcomes provide strong assurances that infants in all conditions had accumulated sufficient exposure to the familiarization materials to detect a difference in the novel test scene (either a novel action (Experiment 1) or a novel object (Experiment 2).

6 In Experiment 1, performance in the Verb conditions diverges reliably from that in the Noun and No Word condition between 1400 and 1600 ms (bin 8) on trials 1 and 2; between 400 and 600 ms (bin 3) on trials 3 and 4, and between 0 and 200 ms (bin 1) on trials 5 and 6. In Experiment 2, performance in the Noun conditions diverges reliably from that in the Verb and No Word condition between 800 and 1000 ms (bin 5) on trials 1 and 2; between 400 and 600 ms (bin 3) on trials 3 and 4, and between 0 and 200 ms (bin 1) on trials 5 and 6.
TABLE 1
Representative set of the stimuli presented in Experiment 1

<table>
<thead>
<tr>
<th>Exp. 1: Action</th>
<th>Familiarization</th>
<th>Contrast</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test</td>
<td>Man waving balloon (4 consecutive exemplars)</td>
<td>Man playing toy saxophone</td>
<td>Man waving balloon</td>
</tr>
</tbody>
</table>

Verb: “Look, the man is *larping* a balloon!”

Noun: “Look, the man is waving a *larp!*”

No Word: “Look at this!”

<table>
<thead>
<tr>
<th>Familiar Scene</th>
<th>Novel Scene</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verb: Uh-oh! He’s not larping that.</td>
<td>Verb: “Now look, they’re different! (Baseline) “Which one is he larping?” (Response)</td>
</tr>
<tr>
<td>Noun: Uh-oh! That’s not a larp!</td>
<td>Noun: “Now look, they’re different! (Baseline) “Which one is a larp?” (Response)</td>
</tr>
<tr>
<td>No Word: Uh-oh! Look at that.</td>
<td>No Word: “Now look, they’re different! (Baseline) “What do you see now?” (Response)</td>
</tr>
<tr>
<td>Verb: Yay! He is larping that.</td>
<td>Verb: “Now look, they’re different! (Baseline) “Which one is he larping?” (Response)</td>
</tr>
<tr>
<td>Noun: Yay! That is a larp!</td>
<td>Noun: “Now look, they’re different! (Baseline) “Which one is a larp?” (Response)</td>
</tr>
<tr>
<td>No Word: Yay! Look at this.</td>
<td>No Word: “Now look, they’re different! (Baseline) “What do you see now?” (Response)</td>
</tr>
</tbody>
</table>

TABLE 2
Representative set of the stimuli presented in Experiment 2

<table>
<thead>
<tr>
<th>Exp. 2:</th>
<th>Familiarization</th>
<th>Contrast</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Object Test</td>
<td>Man waving balloon (4 consecutive exemplars)</td>
<td>Man playing toy saxophone</td>
<td>Man waving balloon</td>
</tr>
<tr>
<td></td>
<td>Verb: “Look, the man is larping a balloon!”</td>
<td>Verbal: Uh-oh! He’s not larping that.</td>
<td>Verbal: “Now look, they’re different! (Baseline) “Which one is he larping?” (Response)</td>
</tr>
<tr>
<td></td>
<td>Noun: “Look, the man is waving a larp!”</td>
<td>Noun: Uh-oh! That’s not a larp.</td>
<td>Noun: “Now look, they’re different! (Baseline) “Which one is a larp?” (Response)</td>
</tr>
<tr>
<td></td>
<td>No Word: “Look at this!”</td>
<td>No Word: Uh-oh! Look at that.</td>
<td>No Word: “Now look, they’re different! (Baseline) “What do you see now?” (Response)</td>
</tr>
</tbody>
</table>
Figure Captions

Figure 1. Experiment 1. Time-course of infants’ looking behavior in the baseline and response windows in each condition, aggregated over all trials.

Figure 2. Experiment 1. Mean proportion of looking time towards the familiar test scene in the baseline and response windows, expressed as a function of condition.

Figure 3. Experiment 2. Time-course of infants’ looking behavior in each condition, aggregated over all trials.

Figure 4. Experiment 2. Mean proportion of looking time towards the familiar test scene in the baseline and response windows, expressed as a function of condition.

![Graph showing baseline and response windows with questions and proportion looking to familiar scene over time.](image-url)
APPENDIX A: Complete Sets of Stimuli for Experiments 1 and 2

<table>
<thead>
<tr>
<th>Familiarization (four consecutive scenes)</th>
<th>Contrast</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Familiar scene</td>
<td>Novel scene</td>
</tr>
<tr>
<td>Man waving balloon</td>
<td>Playing toy saxophone</td>
<td>Waving balloon</td>
</tr>
<tr>
<td>Woman washing cup</td>
<td>Playing guitar</td>
<td>Washing cup</td>
</tr>
<tr>
<td>Man pushing chair</td>
<td>Bouncing ball</td>
<td>Pushing chair</td>
</tr>
<tr>
<td>Woman twirling umbrella</td>
<td>Lifting hat on head</td>
<td>Twirling umbrella</td>
</tr>
<tr>
<td>Boy pulling bunny</td>
<td>Sweeping floor with broom</td>
<td>Pulling bunny</td>
</tr>
<tr>
<td>Girl petting dog</td>
<td>Drinking from cup</td>
<td>Petting dog</td>
</tr>
</tbody>
</table>
APPENDIX B: Complete Sets of Introductory phrases used in Experiments 1 and 2

<table>
<thead>
<tr>
<th>Trial</th>
<th>Familiarization</th>
<th>Contrast</th>
<th>Baseline</th>
<th>Test</th>
<th>Response¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waving</td>
<td>1) Look, the man is larping a balloon.</td>
<td>Uh oh!</td>
<td>Yay!</td>
<td>Now look.</td>
<td>Which one is he larping? or Where is he larping something?</td>
</tr>
<tr>
<td>Balloon</td>
<td>2) The man is larping another balloon.</td>
<td>He’s not larping that!</td>
<td>He is larping that!</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3) Do you see the man larping a balloon?</td>
<td>That’s not a larp!</td>
<td>That is a larp!</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4) Look, the man is larping a balloon!</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Noun</td>
<td>1) Look, the man is waving a larp.</td>
<td>Uh oh!</td>
<td>Yay!</td>
<td>Now look.</td>
<td>Which one is a larp? or Where is a larp?</td>
</tr>
<tr>
<td></td>
<td>2) The man is waving another larp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3) Do you see the man waving a larp?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4) Look, the man is waving a larp!</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No Word</td>
<td>1) Wow, look what’s happening here.</td>
<td>Uh oh!</td>
<td>Yay!</td>
<td>Now look.</td>
<td>What do you see now?</td>
</tr>
<tr>
<td></td>
<td>2) Look at this.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3) Do you see that?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4) Hey, look there!</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Washing</td>
<td>1) Look, the girl is semming a cup.</td>
<td>Uh oh!</td>
<td>Yay!</td>
<td>Now look.</td>
<td>Which one is she semming? or Where is she semming something?</td>
</tr>
<tr>
<td>Cup</td>
<td>2) The girl is semming another cup.</td>
<td>She’s not semming that!</td>
<td>She is semming that!</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3) Do you see the girl semming a cup?</td>
<td>That’s not a sem!</td>
<td>That is a sem!</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4) Look, the girl is semming a cup!</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Noun</td>
<td>1) Look, the girl is washing a sem.</td>
<td>Uh oh!</td>
<td>Yay!</td>
<td>Now look.</td>
<td>Which one is a sem? or Where is a sem?</td>
</tr>
<tr>
<td></td>
<td>2) The girl is washing another sem.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3) Do you see the girl washing a sem?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4) Look, the girl is washing a sem!</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No Word</td>
<td>1) Wow, look what’s happening here.</td>
<td>Uh oh!</td>
<td>Yay!</td>
<td>Now look.</td>
<td>What do you see now?</td>
</tr>
<tr>
<td></td>
<td>2) Look at this.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3) Do you see that?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4) Hey, look there!</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pushing</td>
<td>1) Look, the man is dacking a chair.</td>
<td>Uh oh!</td>
<td>Yay!</td>
<td>Now look.</td>
<td>Which one is he dacking? or Where is he dacking something?</td>
</tr>
<tr>
<td>Chair</td>
<td>2) The man is dacking another chair.</td>
<td>He’s not dacking that!</td>
<td>He is dacking that!</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3) Do you see the man dacking a chair?</td>
<td>That’s not a dacket!</td>
<td>That is a dacket!</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4) Look, the man is dacking a chair!</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Noun</td>
<td>1) Look, the man is pushing a dacket.</td>
<td>Uh oh!</td>
<td>Yay!</td>
<td>Now look.</td>
<td>Which one is a dacket? or Where is a dacket?</td>
</tr>
<tr>
<td></td>
<td>2) The man is pushing another dacket.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3) Do you see the man pushing a dacket?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4) Look, the man is pushing a dacket!</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No Word</td>
<td>1) Wow, look what’s happening here.</td>
<td>Uh oh!</td>
<td>Yay!</td>
<td>Now look.</td>
<td>What do you see now?</td>
</tr>
<tr>
<td></td>
<td>2) Look at this.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3) Do you see that?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4) Hey, look there!</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹ Each infant heard the following construction “Which one is he/she Xing?” (Verb condition) or “Which one is a X?” (Noun condition) on three of their six trials. On the remaining three trials, the infants heard “Where is he/she Xing something?” (Verb condition) or “Where is a X?” (Noun condition).
<table>
<thead>
<tr>
<th>Trial</th>
<th>Familiarization</th>
<th>Contrast</th>
<th>Baseline</th>
<th>Test</th>
<th>Response¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Twirling Umbrella Verb</td>
<td>1) Look, the girl is wugging an umbrella. 2) The girl is wugging another umbrella. 3) Do you see the girl wugging an umbrella? 4) Look, the girl is wugging an umbrella!</td>
<td>Uh oh! He’s not wugging that!</td>
<td>Yay! He is wugging that!</td>
<td>Now look. They’re different.</td>
<td>{ Which one is he wugging? or Where is he wugging something?</td>
</tr>
<tr>
<td>Noun</td>
<td>1) Look, the girl is twirling a wuggit. 2) The girl is twirling another wuggit. 3) Do you see the girl twirling a wuggit? 4) Look, the girl is twirling a wuggit!</td>
<td>Uh oh! That’s not a wuggit!</td>
<td>Yay! That is a wuggit!</td>
<td>Now look. They’re different.</td>
<td>{ Which one is a wuggit? or Where is a wuggit?</td>
</tr>
<tr>
<td>No Word Verb</td>
<td>1) Wow, look what’s happening here. 2) Look at this. 3) Do you see that? 4) Hey, look there!</td>
<td>Uh oh! Look at that!</td>
<td>Yay! Look at this!</td>
<td>Now look. They’re different.</td>
<td>{ Which one is she Xing? or Where is she Xing something?</td>
</tr>
<tr>
<td>Pulling Bunny Verb</td>
<td>1) Look, the man is toping a bunny. 2) The man is toping another bunny. 3) Do you see the man toping a bunny? 4) Look, the man is toping a bunny!</td>
<td>Uh oh! She’s not toping that!</td>
<td>Yay! She is toping that!</td>
<td>Now look. They’re different.</td>
<td>{ Which one is she toping? or Where is she toping something?</td>
</tr>
<tr>
<td>Noun</td>
<td>1) Look, the man is pulling a topin. 2) The man is pulling another topin. 3) Do you see the man pulling a topin? 4) Look, the man is pulling a topin!</td>
<td>Uh oh! That’s not a topin!</td>
<td>Yay! That is a topin!</td>
<td>Now look. They’re different.</td>
<td>{ Which one is a topin? or Where is a topin?</td>
</tr>
<tr>
<td>No Word Verb</td>
<td>1) Wow, look what’s happening here. 2) Look at this. 3) Do you see that? 4) Hey, look there!</td>
<td>Uh oh! Look at that!</td>
<td>Yay! Look at this!</td>
<td>Now look. They’re different.</td>
<td>{ Which one is he pilking? or Where is he pilking something?</td>
</tr>
<tr>
<td>Petting Dog Verb</td>
<td>1) Look, the girl is pilking a dog. 2) The girl is pilking another dog. 3) Do you see the girl pilking a dog? 4) Look, the girl is pilking a dog!</td>
<td>Uh oh! He’s not pilking that!</td>
<td>Yay! He is pilking that!</td>
<td>Now look. They’re different.</td>
<td>{ Which one is he pilking? or Where is he pilking something?</td>
</tr>
<tr>
<td>Noun</td>
<td>1) Look, the girl is petting a pilker. 2) The girl is petting another pilker. 3) Do you see the girl petting a pilker? 4) Look, the girl is petting a pilker!</td>
<td>Uh oh! That’s not a pilker!</td>
<td>Yay! That is a pilker!</td>
<td>Now look. They’re different.</td>
<td>{ Which one is a pilker? or Where is a pilker?</td>
</tr>
<tr>
<td>No Word Verb</td>
<td>1) Wow, look what’s happening here. 2) Look at this. 3) Do you see that? 4) Hey, look there!</td>
<td>Uh oh! Look at that!</td>
<td>Yay! Look at this!</td>
<td>Now look. They’re different.</td>
<td>{ Which one is she Xing? or Where is she Xing something?</td>
</tr>
</tbody>
</table>

¹ Each infant heard the following construction “Which one is he/she Xing?” (Verb condition) or “Which one is a X?” (Noun condition) on three of their six trials. On the remaining three trials, the infants heard “Where is he/she Xing something?” (Verb condition) or “Where is a X?” (Noun condition).