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SUMMARY 

Subject-specific and population-averaged continuation ratio logit models are presented for 
multivariate discrete time survival data. The models characterize data from a psychological experi- 
ment by using a quadratic polynomial relationship across time that depends on a time-independent 
condition. A multivariate normal random effects distribution is imposed on intercept, linear and 
quadratic terms in the subject-specific model, which is fitted by using a combination of Gibbs 
sampling and buffered stochastic substitution. Variance components that tend towards 0 are 
addressed in this context. In addition, generalized estimating equations estimates of the param- 
eters in the population-averaged model are compared with analogous estimates for the mixed 
effects model. 

Keywords: Bayesian models; Generalized estimating equations; Gibbs sampling; Hyperpriors; 
Mixed effects; Variance components 

1. Introduction 

Subject-specific and population-averaged continuation ratio logit (CRL) models 
are presented for correlated discrete time survival data. Given a set of ordinal 
multinomial response probabilities summing to 1, the continuation ratio is defined 
to be the ratio of a multinomial probability over the partial sum of the remaining 
multinomial probabilities (see, for example, Agresti (1990), pages 319-321, for 
details). 

The data of interest (listed in Appendix E) consist of multiple discrete time 
survival profiles for each subject of a psychological study that attempted to 
determine whether children could compensate for map rotation if they were given 
repeated opportunities to discover that the map was rotated. The sample comprised 
89 children, of ages 35-67 months, each of whom attempted to find a toy hidden 
under one of 20 buckets scattered throughout a room. The toy was hidden at 10 
different locations, the order of which was the same for each child. For each of 
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372 TEN HAVE AND UTTAL 

these 10 trials, each subject was allowed three attempts to find the toy after seeing 
a map indicating the location of the toy. Each subject was randomly assigned to 
one of two groups: one in which the map was rotated when presented by an 
investigator and one in which the map was presented correctly. The primary 
question of interest is: did the rotated map group recover and eventually find the 
toy as successfully as the non-rotated map group? Hence the focus of the analysis 
is on modelling and comparing the trends in correctness across the 10 locations in 
the two groups, where location represents a discrete time variable. 

The CRL model, which was introduced by Cox (1972), has been employed by 
several researchers in the context of discrete time data. Fienberg and Mason (1978) 
estimated simultaneously age, period and cohort effects with the CRL model. 
Thompson (1977) showed that for grouped time survival data the CRL model 
converges to the Cox proportional hazards model when the number of intervals 
increases and the interval lengths go to 0. Efron (1988) used semiparametric 
smoothing to fit the CRL model to head and neck cancer data. Gillespie et al. (1993) 
fitted similar CRL models to evaluate the risk of lung cancer in a sample of 
ex-smokers. In addition, Ryan (1992) discussed fitting CRL models with an 
overdispersion parameter to correlated developmental toxicity data that involved a 
discrete time variable (see also D'Agostino et al. (1990) and Agresti (1990), pages 
319-321 and 337). 

The subject-specific and population-averaged CRL models considered here are 
extensions of the logistic regression models discussed by Zeger et al. (1988). The 
subject-specific CRL model is a mixed effects model where the expectation of a 
response is conditional on a subject-specific or cluster-specific random effect. In 
the population-averaged CRL model, the expectation of a response is obtained by 
integrating out the subject-specific random effects and hence is interpreted as an 
average for the population of interest as opposed to an individual subject. 

The mixed effects CRL model presented here is distinguishable from the subject- 
specific model of Zeger et al. (1988) in several respects: 

(a) the CRL model represents an extension of the logistic random effects 
models; 

(b) the model here includes a multivariate random effects distribution for the 
intercept and linear and quadratic effects; 

(c) a proper hyperprior distribution is imposed on the random effects 
variance-covariance components; 

(d) several previously reported approaches are integrated to yield a modified 
Gibbs sampling routine. 

These points will be elucidated later. 
For fitting the population-averaged logistic regression model to clustered data, 

Liang and Zeger (1986) proposed generalized estimating equations (GEES), which 
are score-like functions that are derived by incorporating a working correlation 
matrix (i.e. the correlation is treated as a nuisance parameter) into the likeli- 
hood equations for logistic regression. The solution of this function yields GEE 
estimators, which are consistent regardless of which working correlation structure 
is assumed. Results based on the GEE method are presented for both the inde- 
pendence and the exchangeable working correlation matrices. Henceforth, when the 
independence or exchangeable working correlation matrix is assumed, the GEE 
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estimates will be referred to as the independence or exchangeability GEE estimates 
respectively. 

The subject-specific CRL model is developed in Sections 2 and 3. The correspon- 
ding population-averaged model is presented in Section 4. The results of fitting the 
mixed effects and population-averaged models are presented in Section 5. Section 
6 concludes the paper with a discussion. 

2. Subject-specific Continuation Ratio Logit Model 

Let Yijkl = 1 when the kth child, who is in the lth group (for I =  1 (rotated), 2 
(non-rotated)), finds the toy on the ith attempt (for i =  1, 2, 3) at the jth hidden 
location (for j = 1, . . ., lo), and let Yfll  = 0 otherwise for all i, j, k, 1. Also let 
Y4jk/ = I when the child fails to find the toy after three attempts, and let Y4jkl = 0 
otherwise for all j ,  k, I. For given j, k, I, c;= I YUkl = 1. 

Conditional on subject k in the lth group at the j th  location, assume that the 
random vector Yjkl = (Yljkl . . . Y4jkl) has a multinomial distribution with mean 
parameters {rijk1 = E ( Yijkll rk)  , i = 1, . . ., 4: c:= rijkl = 1), where rk is the vector of 
subject k's random effects parameters in the subject-specific CRL model defined 
below. 

Next define hW as follows: 

A ijkl = rijkl r i ' j k l  / j' 4 = ;  

for i =  1, 2, 3 and all j ,  k and 1, and where YOjkl = 0. Given the random effect of 
the kth subject in the lth group, and given that he or she has failed to find the 
toy at the j th hidden location on the previous i-  1 attempts, hUkl is the conditional 
probability that the child finds the toy on the ith attempt, i.e. hW is a discrete 
hazard rate conditional on the kth subject effect. (See, for example, Agresti (1990), 
p. 337, for a hazard rate interpretation of a ratio of probabilities similar to Auk/.) 

Conditional on the effect of the kth subject in the lth group, the log-likelihood 
for the j th hidden location can be expressed in terms of a sum of Bernoulli log- 
likelihoods involving the hijkl parameters as follows: 

4 

= 5 I i j k  + l o g ( l - * i j k l )  Y i , jk l  
i = l  j' = ;  

for i = 1, 2, 3 and all j ,  k and 1, and where $ijkl = h w( 1 - h i j k l )  - I .  The parameter 
#ijkl is a continuation ratio and can be interpreted as the conditional odds that 
subject k in group 1 at location j finds the toy on the ith attempt given that the 
subject has not found the toy on the previous i attempts. 

Now consider a mixed effects logistic regression model for i = 1, 2, 3, which 
accounts for the correlation among repeated observations within individuals. The 
variable indicating the location at which the toy is hidden is ordinal, in that the 
children improve by learning as they proceed across the 10 hidden locations but then 
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become fatigued. Consequently, the location effect can be characterized by a 
polynomial growth curve. A priori information and a preliminary analysis of the 
data suggest that learning and fatigue in this context correspond to a quadratic 
relationship between the conditional log-odds of a correct choice and location. 
Orthogonal contrasts are employed here to help to maintain numerical stability and 
to improve the precision of the location estimates. A preliminary analysis of the 
data also reveals that the effects of location appear to be independent of attempt, 
although the effects of location and attempt do appear to interact separately with 
rotation of the map. The resulting mixed effects model is 

log ,b,, = p0 + p2 + PL1X1, + PL2Xlj + 0; + pfIRxl, + pf2Rxti 
+ T! + *'XIj + *2X2j, (3) 

where /3fi = = PILIR = PlLZR = 0 and XI, and X3 are orthogonal linear and 
quadratic coefficients for the Ith location. The T-parameters in equation (3) are 
random effects parameters and will be collectively referred to as the 3 x 1 vector 
rk for subject k. The remaining parameters, denoted by the 10 x 1 vector 0, are 
fixed effects parameters and are interpreted as follows: 

(a) pO, the intercept, represents the log-odds that a subject finds the toy on the 
first attempt when all covariates are 0; 

(b) 0; is the change in the conditional log-odds of a correct choice when a 
subject in the lth group finds the toy on the ith attempt instead of on the 
first attempt at a give hidden location; 

(c) PL1 and PL2 represent linear and quadratic location effects respectively for 
a subject in the rotated map group; 

(d) @,R is the change in the intercept if a subject in the rotated map group were 
to receive a non-rotated map instead; 

(e) @-IR and pizR are interactions between the rotation effect and the linear 
and quadratic location effects, i.e. these parameters represent the changes 
in the linear and quadratic effects, when a subject changes rotation status. 

The elements of P are assumed to have a multivariate non-informative prior 
distribution, which by definition does not provide information towards estimating 
the fixed effects parameters since the prior variances are assumed to go to infinity. 
Equivalently, 

fl - N,o(q, E ) ,  C- '  -+ 0, (4) 

where q is a 10 x 1 vector of unspecified population mean parameters and C is a 
10 x 10 matrix, the elements of the inverse of which go to 0. 

The random effects parameters T:, ril and rk2 in equation (3) represent subject- 
specific intercept, linear and quadratic random effects terms respectively, which are 
independent of the &parameters. The distribution of these parameters is multi- 
variate normal: 

where 0 is a 3 x 1 vector of 0s and 52 is a 3 x 3 variance-covariance matrix. 
Following Zeger and Karim (1991), a non-informative hyperprior (i.e. a distribu- 

tion for the parameters of a prior distribution) can be assumed for 52: 

* - . . , UM - -*be.. 
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wherep (= 3) is the number of random effects variates. Alternatively, we can specify 
an informative proper hyperprior for h2-', such as a Wishart distribution, 

where W, denotes the trivariate Wishart distribution, and R and p are an a priori 
specified 3 x 3 non-singular symmetric matrix and a positive scalar respectively. 

3. Estimation of Subject-specific Model 

Parameter estimation for the mixed effects CRL model can be viewed in terms 
of estimating univariate posterior densities (see, for example, Stiratelli et al. (1984) 
and Zeger and Karim (1991)) of the 0- and Q-parameters in models (3) and (5). The 
approach used to estimate these posterior densities given the priors defined above 
and the data involves a modification of the Gibbs sampling procedure performed 
by Zeger and Karim (1991). The Gibbs sampler is an iterative algorithm that 
simulates approximations to univariate or joint posterior densities given the data 
and priors. A buffered stochastic substitution procedure was incorporated into the 
Gibbs sampling algorithm used for this paper to reduce the correlation between 
iterations (see Appendix A). At each iteration of the Gibbs sampler, we sampled 
each of the elements of 0,  rk and h2 from their respective proper conditional 
posterior densities given the data and previously simulated values of all other 
parameters in the model (see Appendix B). 

Convergence of the Gibbs sampling algorithm was not achieved with the non- 
informative hyperprior density (6) for 52, because the simulated variance com- 
ponents of 12 became trapped at 0. However, convergence appeared to be achieved 
(although after 1500 iterations) with the Wishart hyperprior (7) given p =  1 and 
R=0.00113x3. 

After convergence, the Gibbs sampler was run for 2000 more iterations, yielding 
estimated univariate posterior distributions and corresponding moments and 
percentiles for the fixed effects and variance components of the random effects. 
In addition, the Gibbs sampling output was used to compute posterior estimates 
l?(hijkl) of the population average of the subject-specific discrete hazard rate, 

where F( ) denotes the multivariate normal distribution of 7,  (see Appendix C). 

4. Population-averaged Continuation Ratio Logit Model 

Now consider averaging the subject-specific hazard rate hijkl over the 'survivors' 
in group 1 at attempt i of location j (i.e. the subjects in group 1 who have not found 
the toy by the ith attempt at the j th location), i.e. given the subject-specific model 
defined in equations (1) and (3), let 

We fitted hF with a model that is analogous to the mixed effects model in 
equation (3) wlthout the random effects: 
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log rC/; = pO* + @f * + pL1 *XU + pL2*X2j + py * + /3f-1R*X,j + pf-2R*X2j (9) 

where +,$ =A;/( 1 -A;/ ) - ' for i = 1, 2, 3 and all j and I. The parameters in model 
(9) will be collectively referred to as the 10 x 1 vector @ * and are interpreted similarly 
to the corresponding subject-specific @-parameters in model (3). However, instead 
of being interpreted with respect to subject-specific conditional probabilities, the 
@*-parameters in model (9) are interpreted with respect to the expected proportions 
of subjects who find the toy. For example, testing @:* = O  is the test of the hy- 
pothesis that, for a given location, the expected proportion of all subjects in the 
lth group who find the toy on the first attempt does not differ from the expected 
proportion that find the toy on the ith attempt among those subjects in the lth group 
who have not found the toy on the previous i- 1 attempts. 

Given the Bernoulli log-likelihood (2) with Auk/ and +uk/ replaced by A$ and $$ 
respectively, we define the corresponding GEEs, the solutions of which yield GEE 
estimates of @*: 

where Ykl is the vector of observed conditional responses (i.e. {yW; yi,jk/=O, i' < 
i v j ) )  for the kth of N, individuals in group I, A;, is the vector of correspond- 
ing population-averaged discrete hazard rates, Dkl is the matrix of derivatives 
(aA;//a@*) and Vk/ is the working variance-covariance matrix for the elements 
of Ykl. 

GEE estimates of the parameters in model (9) that are based on independence 
and exchangeable working correlation matrices are reported below with naive and 
sandwich variance estimates. The sandwich estimator is a consistent estimator of 
the variance-covariance structure of the GEE estimates regardless of the working 
correlation structure used to obtain the GEE estimates. Let be the vector of 
GEE-based estimates of the population-averaged discrete hazard rates (see Appen- 
dix D) for subject k in group I and vk/ and D~~ be estimates of Vk/ and D~~ respec- 
tively. The sandwich estimator is defined to be 

where 

(see, for example, Liang and Zeger (1986) for more details). 
The nalve estimator of the variance-covariance matrix of the GEE estimators is 

H-', which is the negative inverse of the observed information when the GEEs are 
likelihood equations. Hence, when independence holds and the independence 
working correlation is used, comparing the GEE estimates with their respective 
naTve standard errors in equivalent to performing Wald tests based on maximum 
likelihood estimates and their respective observed information-based standard 
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TABLE 1 
Cornparkon of estimates of parameters in the subject-specific model (3) with independence and 
exchangeability estimates of the parameters in the population-averaged model (9) 

Explanatory Mixed effects Marginal independence Marginal exchangeable 
variable 

Mean Standard Estimate Naiie Robust &timate Nalve Robust 
error standard standard standard standard 

error error error error 

Intercept 
Attempt 2-rotated 
Attempt 3-rotated 
Attempt 2-non-rotated 
Attempt 3-non-rotated 
Rotate 
Linear 
Quadratic 
Linear-rotated 
Quadratic-rotated 

errors. Table 1 reveals that the naive and robust standard errors for the inde- 
pendence GEE estimates are very similar for the data of interest. Although all results 
reported here for the independence GEE estimates pertain to the comparison of the 
independence GEE point estimates with their respective sandwich standard errors, 
these results also hold approximately for the maximum likelihood analysis under 
independence. 

5. Results 

5.1. Comparison of Population-averaged and Subject-specific Models 
Table 1 indicates that the mixed effects estimates of the non-attempt parameters 

(i.e. parameters other than @$, i = 2, 3, I =  1 ,  2) exceed in magnitude (up to 15%) 
the corresponding GEE estimates of the population-averaged model under both 

2 4 6 8 10 2 4 6 8 10 

location location 

Fig. 1 .  Plot of mixed effects estimates of the population averages of the subject-specific hazard 
probabilities across location for each attempt for (a) the rotated map population and (b) the non- 
rotated map group: - , attempt 1; ..-..-.. , attempt 2; --------, attempt 3 
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TABLE 2 
Observed percentage correct? displayed for aN combinations of 
attempt and rotation summed over Iocation 

1 Rotation Percentages for the following number of I 

I status attempt: 
2 

Yes 24.4 21.8 16.5 
(105/430) (7 1/325) (42/254) 

No 53.5 40.7 25.2 
(246/460) (87/214) (32/127) 

-- -- - 

tThe numbers of correct choices over the total number of observations 
are given in parentheses. 

working correlation matrices. Note that the exchangeability and independence GEE 
estimates of the non-attempt parameters differ by no more than 5%. 

Inferences based on the estimates of the group-attempt interactions are affected 
by the choice of the model (Fig. 1). For example, the non-rotated map subjects 
performed significantly more poorly on attempt 2 than on attempt 1 if the indepen- 
dence GEE estimate is used (Z = 0.50/0.17 = - 2.94), yet the exchangeability GEE 
(Z= - 0.19/0.16 = - 1.19) and mixed effects (Z = - 0.28/0.18 = - 1.56) estimates of 
this effect are not significant (Table 1). A similar situation exists for the attempt 
3-attempt 1 contrast for the rotated map group, where the independence GEE 
approach shows borderline significance (2 = - 0.40/0.22 = - 1.82) in contrast with 
the clearly non-significant estimates of the other approaches. 

The frequencies (summed across location) and corresponding percentages for the 
cross-classification of the rotate and attempt effects are displayed in Table 2 to help 
to explain these differences in group-specific attempt effect estimates among the 
models. There is a precipitous drop in percentage correct between attempts 1 and 
3 (53.5% compared with 25.2%) for the non-rotated map group, which is shown 
to be very significant by all the models. A less substantial drop from 53.5% to 
40.7% between attempts 1 and 2 for the non-rotated map group corresponds to the 
conflicting inferences described above for this contrast. Fig. 2(b) suggests that 
the very significant independence estimate of this effect (Z= -2.94) is question- 
able since the independence GEE procedure apparently weighted the clinically 
unexplained spike at location 5 for the attempt 1 profile more heavily than did the 
exchangeability GEE and mixed effects estimation approaches. A similar examina- 
tion of Table 2 and Fig. 2(a) reveals that for the rotated group the independence 
GEE procedure weighted the spike at location 7 for attempt 1 in Fig. 2(a) more 
heavily than did the other procedures. 

The similarity of the parameter inferences between the mixed effects and 
exchangeability GEE approaches extends to the comparison of the mixed effects 
estimates of the population-averaged discrete hazard rate (i.e. l?(hiikl); see 
Appendix C) with the corresponding fitted values from the exchangeability GEE 
estimates (i.e. A$[; see Appendix D). The plot of these two sets of estimates against 
each other for all attempt-rotation-location combinations in Fig. 3 indicates good 
agreement between these two sets of estimates. Fig. 3 also includes a similar plot 
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2 4 6 8 10 2 4 6 8 10 

location location 

(a) (b) 
Fig. 2. Plot of observed percentage correct across location for each attempt for (a) the rotated map 
group and (b) the non-rotated map group: - , attempt 1; .-.-.... , attempt 2; -------, attempt 3 

of the independence GEE estimates of A t l  and the mixed effect estimates of Atl, 
revealing poorer agreement between these two sets of estimates. 

5.2. Summary of Substantive Results 
Although the following results are based on the subject-specific estimates in Table 

1, they are supported by all models. 

(a) For a given subject in the rotated map group, the conditional probability 
of a correct choice improved significantly across locations (linear Z =  
0.086/0.015 =5.73), but this increase levelled off in the later locations 
(quadratic Z =  - 0.095/0.025 = - 3.8) so that the conditional probability of 

0 1  0 2  0 3  0 4  0 5  

Exchangeab~lity GEE Independence GEE 

Fig. 3. Mixed effects estimates of the population-averaged discrete hazard rate (i.e. B ( h  ijkl)) versus 
the corresponding fitted values from the exchangeability and independence GEE estimates, separately 
(i.e. A:/) 
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TABLE 3 
Posterior estimates of the variance-covariance components of Q for the mixed 
effects model (3) t 

Component of O Posterior estimates 

Mean Median Standard error 2.5% 97.5% 

nint 0.31 0.30 0.14 0.059 0.61 
Qint- in 0.0085 0.0083 0.0034 0.0025 0.016 
%nt-quad -0.0068 -0.0058 0.0012 -0.033 0.016 
Q,in 0.00036 0.00035 0.00012 0.00018 0.00063 
%n-quad 0.00069 0.00065 0.00039 0.000015 0.0015 
Oquad 0.01 1 0.01 1 0.0038 0.0052 0.020 

?The column headings 2.5% and 97.5Vo designate the 2.5 and 97.5 percentiles 
respectively. 

success did not reach the conditional success rate on attempt 1 if the subject 
had received a non-rotated map. 

(b) For a given subject in the non-rotated map group, the conditional prob- 
ability of a correct choice did not rise as much across location as if the 
subject had received a rotated map (linear-rotated Z = - 0.065/0.020 = 
-3.25). Moreover, the conditional probability of success on the third 
attempt was significantly less than that of the first attempt for a given sub- 
ject in the non-rotated map group at a given location (Z= -0.89/0.24= 
- 3.71), which contrasts with the non-significant attempt effects for a given 
subject in the rotated map group. 

Finally, the posterior estimates and densities of the variance componznts pre- 
sented in Table 3 and Fig. 4 reveal that the estimated density of the variance 
component for the linear term is massed near 0, in contrast with the densities of 
the intercept and quadratic variance components. Hence, it appears that the vertical 
placements and shapes of the subject-specific curves vary more than the slopes, 
which show relatively little variation. 

6.  Discussion 

The choice between subject-specific and population-averaged models depends on 
whether the focus is on hypothesis testing or estimation. In terms of testing, the 
subject-specific and exchangeability GEE approaches yielded similar inferences for 
all parameters and are preferred over the independence GEE method, which was 
sensitive to clinically unexplained spikes in the observed profiles as seen in Figs 2(a) 
and 2(b). The similarities in inference between the subject-specific and exchange- 
ability GEE methods agree with the results reported by Zeger et al. (1988) for the 
logistic regression model. 

With regard to estimation, the subject-specific model is preferred if we are 
interested in the effects of covariates on subject-specific discrete hazard rates. 
However, if we are interested in estimating the population average of the subject- 
specific hazard rate then either model is theoretically and empirically appropriate, 
although the population-averaged model is easier to fit. 
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Attempt 3 -- Rotated Rotate Quadratic 

Fig. 4. Marginal posterior densities of representative fixed effects and variance component 
parameters of the subject-specific model (3): the full and dotted vertical lines indicate the positions 
of the independence and exchangeability GEE estimates respectively, corresponding to the displayed 
fixed effects distributions 

The observed differences between the independence and exchangeability GEE 
estimates of the attempt effects are attributable to the relatively small numbers of 
subjects (42 or fewer) on which the second and third attempt effects estimates are 
based. Our preference for the exchangeability GEE estimate conforms with previous 
work (see, for example, Lipsitz et al. (1991) and Liang et al. (1992)). However, 
McDonald (1993) contends that the independence GEE estimate is more 'stable' than 
GEE estimates that account for working correlations when fitting binary logistic 
regression models for small samples. Determining which view holds for CRL models 
is a subject of future research. 
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Appendix A 
The extension of Clayton's buffered stochastic substitution algorithm to the CRL model 

with multiple prior parameters can be explained as follows. Perform the following three 
steps, which comprise a buffered stochastic s~bstitution algorithm, at the ith iteration. 

(a) Draw 62 and P simulated at an iteration randomly selected from the previous B, 
iterations. 

(b) Given the randomly drawn simulations of 62 and P, perform the rejection sampling 
algorithm to simulate the components of rk. Repeat this step B2 times. 

(c) Given the components of T~ sampled at the last (B2th) repetition of step (b), 
simulate new 62 and P ,  which then enter the pool of simulations of 62 and P from 
which we randomly sample for the next iteration. Initially B1 is small, but it is then 
increased as the equilibrium distribution is attained. For the present paper, B1 was 
increased to 100 and B2 = 5 (see Clayton (1991) for more details). 

Appendix B 
Consider simulating the components of 62-'. Given the Wishart hyperprior specified in 

distribution (7), the conditional posterior distribution for 62- I  is a Wishart distribution 
with parameters that are functions of T ~ ,  p and R:  

Setting p = 0 in distribution (13) yields the conditional density which results from the non- 
informative prior specified in model (6). Generating random variates from distribution (13) 
is straightforward using algorithms discussed by Ode11 and Feivson (1966). 

As an example of simulating the random and fixed effects parameters at the ith iteration, 
consider simulating the first random effects element for subject k, r i ,  from its conditional 
posterior density. Let h ( ) equal the product of the exponentiated log-likelihood function 
(2) and the prior defined in distribution (9, and let g(  ) be a univariate split t-density 
(Geweke, 1989) with mean and variance such that the split t-density has higher density than 
(i.e. envelopes) the likelihood prior across its support. The rejection sampling algorithm used 
to simulate a value for T!, say r p ,  can then be described as follows: 

(a) sample rg* from g ( ); 
(b) generate a uniform(0, 1) random variate u and 
(c) if u < h(r!*)/cg(&*) then accept &*; otherwise reject r!* and return to step (a). 

At each iteration, we may determine c by matching the mode of the corresponding 
trivariate split t-density to the mode of the likelihood prior, which can be estimated with 
a Newton-Raphson algorithm (see Zeger and Karim (1991) for details). The variance- 
covariance matrix of the multivariate split t-density is matched at each iteration to the 
inverse Hessian of the log-likelihood prior such that the number of rejections for a given 
c is minimized approximately (see Carlin and Gelfand (1991) for details). 

Appendix C 
Following Karim and Zeger (1992) and Zeger et al. (1988), the posterior estimate 

E(hijkl) of the population average of Auk/ is computed as follows. ~t each post- 
convergence iteration of the Gibbs sampler, the following approximation is computed for 
E(Aijkl) based on the simulated fixed effects parameters in the subject-specific probability 
model for the Ith group on the ith attempt at the j th  hidden location: 

P 
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& $$(Q)/(l +$yo) (14) 

where F( ) is the multivariate normal distribution of T ~ ,  log $ijl = flTzijl, Zi.1 is the full 
set of covariates for the Ulth combination, oj(Q)  = I [ ( 1 6 ~ 3 ) / 1 5 ~ ) ' ~ X , ~ + ~ ~  .11 -3", 
X: = ( 1 XI, XZi) and Z3 is the 3 x 3 identity matrix. The average of E (Aijkl) is taken 
across the 2000 post-convergence iterations for each group-location-attempt combination, 
thus yielding the plots of the posterior estimates E(Aw) of the population-averaged 
discrete hazard rates in Figs 2(a) and 2(b). 

Appendix D 

The GEE-based estimate of A$[ is computed as = $GI( 1 + $,TI ) - ', where = 

exp($*T~ijl) and $* is the exchangeability or independence GEE estimate of the param- 
eters in the population-averaged model (9). 

Appendix E: Listing of Map Data 

Each line consists of a subject's rotation status (O=yes, 1 =no) and the number of 
attempts that a subject needed to find the toy at a each location. (The number 4 indicates 
that the subject failed to find the toy at a given location.) 

- - - -- - 

Rotate LI L2 L3 L4 L5 L6 L7 L8 L9 LlO Rotate L l  L2 L3 L4 L5 L6 L7 L8 L9 LlO 

0 4 4 2 2 3 4 1 4 4 4  
0 4 4 4 4 4 4 4 2 4 4  
0 4 4 4 4 3 4 1 4 2 2  
0 4 4 1 4 2 4 1 4 3 3  
0 4 4 3 4 3 4 1 1 3 2  
0 4 4 4 4 4 1 1 1 2 3  
0 4 4 1 1 1 2 1 1 4 4  
0 1 1 3 2 1 1 1 1 1 1  
0 2 4 4 1 4 4 4 4 4 4  
0 4 4 4 4 2 1 1 3 1 4  
1 3 4 2 2 2 4 1 3 1 1  
1 3 2 2 2 1 2 1 2 4 3  
1 2 1 4 4 2 4 2 3 1 1  
1 4 4 4 2 1 1 2 2 2 4  
1 3 1 4 4 1 1 4 4 1 1  
1 3 4 4 4 4 3 2 2 4 4  
1 4 1 2 2 1 4 1 1 2 1  
1 2 1 4 3 3 1 1 2 1 1  
1 1 1 4 1 4 4 3 1 2 1  
1 2 4 1 1 4 1 1 2 1 2  
1 1 2 1 1 1 4 1 1 2 2  
1 2 2 2 3 1 2 1 1 4 2  
1 4 1 1 3 1 2 1 1 1 2  
1 2 1 4 2 1 4 2 1 1 4  
1 2 3 3 4 1 1 2 3 1 1  
1 1 4 4 2 4 4 1 1 1 4  
1 1 4 4 3 1 1 1 4 1 4  
1 3 1 3 2 1 1 2 2 1 4  
1 3 1 1 2 1 4 1 1 1 1  
1 1 2 1 4 1 4 1 4 4 1  
1 2 4 4 4 1 3 4 2 4 4  
1 4 1 1 2 1 1 4 1 3 4  
1 1 1 1 2 1 1 1 1 1 1  

(continued) 
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Rotate LI L2 L3 L4 LS L6 L7 L8 L9 LIO Rotate L l  L2 L3 L4 L5 L6 L7 L8 L9 L10 
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