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Abstract

SUSTAIN (Supervised and Unsupervised STrati�ed Adaptive Incremental Network) is a

model of how humans learn categories from examples. SUSTAIN initially assumes a

simple category structure. If simple solutions prove inadequate and SUSTAIN is

confronted with a surprising event (e.g., it is told that a bat is a mammal instead of a

bird), SUSTAIN recruits an additional cluster to represent the surprising event. Newly

recruited clusters are available to explain future events and can themselves evolve into

prototypes/attractors/rules. Importantly, SUSTAIN's discovery of category substructure

is a�ected not only by the structure of the world, but by the nature of the learning task

and the learner's goals. SUSTAIN successfully extends category learning models to studies

of inference learning, unsupervised learning, category construction, and contexts where

identi�cation learning is faster than classi�cation learning.
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SUSTAIN: A Network Model of Category Learning

Introduction

There is plenty of evidence to suggest that the key to the psychology of

categorization is the exible search for structure. Since Rosch's seminal studies of natural

object categories (e.g., Rosch, 1975; Rosch & Mervis, 1975), the scholarly consensus has

been that, relative to our perceptual and conceptual systems, the world comes in natural

chunks. That is to say, rather than being comprised of orthogonal distributions of

features, the structure of things in the world consists of patterns of correlated features

that create discontinuities or clusters (see also Berlin, Breedlove, and Ravem, 1972).

These clusters may provide the basis for cross-cultural agreement in categorization

schemes (e.g., Malt, 1995) and tend to correspond to young children's assumptions about

the extensions of category names (Rosch, Mervis, Gray, Johnson, & Boyes-Braem, 1976).

Even the view that categories are organized by theories requires that the theories be

attuned to the a�ordances provided by the environment, if the theories are to be useful

(Murphy & Medin, 1985).

But the search for structure must be exible. First of all, even basic level categories

may have correlated features pointing to meaningful substructure. Second, people learn

about and use hierarchically-organized categories, so conceptual schemes must both

coordinate and adjust to these di�erent levels (see, Waxman, 1998, for a review of

developmental studies on this coordination task). Third, concepts and categories serve

multiple functions, and the structure dictated by one goal may not be the most useful

under some other goal or function (Solomon, Medin, & Lynch, 1999). Fourth, although

our perceptual system has evolved, in part, to deliver useful categorizations, sometimes

the categories suggested by perceptual similarity are far less useful than those that might
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be derived from a di�erent analysis or weighting of features (e.g., Goldstone, Schyns, &

Medin, 1997). Thus, the categorization system must be able to both assimilate structure

and discover or even create that structure.

In this paper we introduce and describe experiments bearing on a new model of

category learning that is focused on the exible search for structure, SUSTAIN (Love,

Markman, & Yamauchi, 2000; Love & Medin, 1998a, 1998b). SUSTAIN (Supervised and

Unsupervised STrati�ed Adaptive Incremental Network) initially looks for simple

solutions to category learning problems but is capable of entertaining more complex

solutions when the problem calls for it. The category structures SUSTAIN acquires are

governed by both the structure of the world and the current task or goal.

The remainder of the paper is organized as follows. First, we focus on category

substructure and its implications for the power and exibility of category learning models.

Next, we describe SUSTAIN in terms of a series of general principles and present

SUSTAIN's algorithm (i.e., the mathematical equations that follow from SUSTAIN's

general principles). SUSTAIN is then compared to previous models of category learning.

Next, we briey overview the data sets SUSTAIN will �t, the majority of which are

problematic for other models of category learning. In this analysis, we explain why

SUSTAIN succeeds and why alternative models fail. Finally, we summarize and consider

the general implications of the SUSTAIN framework. The key contribution of SUSTAIN is

to successfully extend models of category learning to a number of paradigms where other

models either have not been applied or lead to incorrect predictions.

Flexibility and the importance of category substructure

One challenge a human learner faces is uncovering the appropriate substructures

within categories. Learning the substructure of a category enables the learner to both

correctly classify instances of the concept and to make appropriate inferences. For
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example, even though both lions and horses are members of the category mammals,

inferences that hold for lions may not hold for horses because these animals fall in

di�erent subcategories or conceptual clusters (felines versus ungulates).

Learning the substructure of a category is not a trivial matter. The internal

structure of a category can be highly nonlinear. For example, spoons tend to be large and

wooden or small and made of steel. For the category \spoon", there is not a characteristic

weighting of the dimensions of material and size, rather there are two distinct subgroups

or conceptual clusters that contain opposite values on these two dimensions. Learning

models that assume a simple category structure, such as prototype models (Posner &

Keele, 1968), are unable to learn categories that have a rich internal structure. For

example, the prototype for the category \spoon" would be situated (in representational

space) between the large wooden spoons and the small steal spoons (Medin & Shoben,

1988). The prototype for the category \spoon" does not capture the distinct subtypes and

would lead to inappropriate classi�cations and inferences. The prototype model is not an

adequate model of human learning and category representation because it is too simple

and inexible.

In general, the complexity of the learner needs to be matched to the complexity of

the learning problem. In the previous example, the complexity of the prototype model was

insuÆcient to master the learning problem. Prototype models are biased only to learn

categories that have a linear structure. Learning problems in which the decision boundary

(in a multi-dimensional representational space) is highly irregular or in which there are

multiple boundaries (e.g., all the members of a category do not fall inside one contiguous

region of representational space) cannot be learned by a prototype model. Early neural

network models (e.g., Rosenblatt, 1958) have similar limitations (Minsky & Papert, 1969).

More complex models can master nonlinear structures but may have diÆculty with

simpler structures. For example, a backpropagation model (Rumelhart, Hinton, &
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Williams, 1986) with many hidden units can learn complex decision boundaries but will

perform poorly on a simple problem. For simple learning problems, overly complex models

will tend to generalize poorly by over-�tting the training data. Thus, making a model too

powerful or too weak is undesirable. Geman, Bienenstock, and Doursat (1992) termed this

tradeo� between data �tting and generalization as the bias/variance dilemma. In brief,

when a model is too simple it is overly biased and cannot learn the correct boundaries.

Conversely, when a model is too powerful, it masters the training set, but the boundaries

it learns may be somewhat arbitrary and highly inuenced by the training sample, leading

to poor generalization.

Flexible power through incremental adaptation

The complexity of learning models is usually �xed prior to learning. For instance, in

network models, the number of intermediate level processing units (which governs model

complexity) is usually chosen in advance (e.g., the number of hidden units in

backpropagation model is set at the start of a simulation). The problem may not be

avoidable by treating the number of intermediate units as an additional parameter,

because certain architectures may be preferable at certain stages of the learning process.

For example, Elman (1994) provides computational evidence (which seems in accord with

�ndings from developmental psychology) that beginning with a simple network and

adding complexity as learning progresses improves overall performance.

Ideally, a learner would adapt its complexity to the complexity of the learning

problem. Indeed, some learning models have an adaptive architecture and adopt this

approach. For instance, some models begin large and reduce unneeded complexity

(Karnin, 1990; Busemeyer & McDaniel, 1997), whereas other adaptive architecture models

(including SUSTAIN) begin small and expand as needed (Ash, 1989; Carpenter,

Grossberg, & Reynolds, 1991; Cho, 1997; Fahlman & Lebiere, 1990; Kruschke & Movellan,
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1991; Azimi-Sadjadi, Sheedvash, & Trujillo, 1993)

Adaptive architecture learning models can be quite e�ective in mastering a wide

range of learning problems because they can adapt their complexity to the current

problem. Humans face a similar challenge. Some categories have a very simple structure,

while others can be complex. Accordingly, learning how to properly classify items as

members of category \A" or \B" can be almost trivial (e.g., when the value of a single

input dimension determines membership) or can be so diÆcult that no regularity is

discovered (e.g., rote memorization of every category member is required to determine

membership). One possibility is that human learning follows the same trajectory, starting

simple and adding complexity only as needed.

Multiple goals and functions

The analogy between machine learning and human learning can only be taken so

far. The complexity of a machine learning problem can be equated with the complexity of

the function that maps inputs (e.g., the stimulus to be classi�ed) to outputs (e.g., the

category membership of the stimulus). Human learning is not as easily (or as accurately)

described in these terms alone.

For example, the category representation a human learner forms may be highly

dependent on the current goals of the learner (e.g. Barsalou, 1985, 1991) and how

categories are used (Markman & Makin, 1998; Ross, 1996, 1997). Categories are often

organized around these goals and conceptual structures are optimized to serve these goals

(Medin et al., 1997a). In a similar fashion, di�erent conceptual functions (e.g.,

classi�cation learning, inference learning, communication) all orient human learners

towards di�erent sources of information and may lead to di�erent category

representations, even when the structure of the information presented to the human

learner is held constant. Depending on the task and learner's goals, the learner may
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spontaneously develop categories (so called \unsupervised learning") or conceptual

organization may be strongly constrained by feedback (\supervised learning"). A exible

model for learning about structure should be able to address a range of goals, tasks, and

functions. As we shall see, SUSTAIN is able to do this.

The SUSTAIN model is intended as an account of how humans incrementally

discover the substructure of categories. SUSTAIN matches its complexity to that of the

learning problem, but in a manner that is goal-dependent and highly inuenced by the

learning mode engaged. These characteristics of SUSTAIN allow it to account for aspects

of human learning that no other current model addresses.

Overview of SUSTAIN

SUSTAIN is a clustering model of human category learning. The basic components

of the model are illustrated in Figure 1. Starting at the bottom of the �gure, perceptual

information is translated into a set of features that are organized along a set of

dimensions. The example in the �gure has values for shape, color, and the category label.

Attentional tunings are learned for these dimensions. These tunings determine the

importance of each feature dimension. The internal representations in the model consist of

a set of clusters that are each associated with a category. The model attempts to assign a

new instance to an existing cluster. This assignment can be done through an unsupervised

learning procedure, though feedback can be used to determine if the initial assignment is

correct. When the assignment is incorrect, a new cluster is formed to represent the current

instance. Classi�cation decisions are based on the cluster to which an instance is assigned.

Insert Figure 1 about here
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Principles of SUSTAIN

SUSTAIN embodies �ve interrelated principles:

1. It is initially directed towards simple solutions.

2. Similar stimulus items cluster together in memory.

3. Learning involves unsupervised and supervised processes.

4. Feedback a�ects the inferred category structure.

5. Cluster selection is competitive.

Principle 1, Simple �rst.

SUSTAIN is initially directed towards simple solutions. SUSTAIN is biased towards

simple solutions because it initially contains only one cluster and adds clusters (i.e.,

complexity) as needed. Its selective attention mechanism further serves to bias SUSTAIN

towards simple solutions by focusing SUSTAIN on a subset of the possible stimulus

dimensions that seem most predictive at the cluster-level.

To illustrate SUSTAIN's preference for simple solutions, consider a classi�cation

learning problem in which animals must be segregated into categories \A" and \B".

SUSTAIN would initially search for simple \rules" that segregate the stimuli into the two

categories. For example, SUSTAIN would prefer solutions that involve one stimulus

dimension (e.g., the items that can y are in category \A", while the items that cannot y

are in category \B"). When these simple solutions prove inadequate, more complex

solutions involving multiple stimulus dimensions and exceptions are entertained.

There is one caveat | because SUSTAIN is an incremental clustering model,

SUSTAIN can occasionally overlook a simple solution if the items are presented in an

unfavorable order. Human learners are also susceptible to ordering e�ects (Bruner,

Goodnow, & Austin, 1956; Garner & Whitman, 1965; Hovland & Weiss, 1953; Goldstone,

1996; Medin & Bettger, 1994). Ordering e�ects primarily arise from SUSTAIN's other
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principles (e.g., di�erent item orderings lead to di�erent pattern of feedback which a�ects

the inferred category structure).

Principle 2, Similar stimulus items tend to cluster together.

In learning to classify stimuli as members of the category \birds" or \mammals",

SUSTAIN would cluster similar items together. For example, di�erent instances of a bird

subtype (e.g., sparrows) could cluster together and form a sparrow (or songbird) cluster

instead of leaving separate traces in memory. Clustering is an unsupervised learning

process because cluster assignment is done on the basis of similarity, not feedback.

Principle 3, SUSTAIN is capable of both supervised and unsupervised learning.

In learning to classify \birds" and \mammals", SUSTAIN would rely on both

unsupervised and supervised learning processes. If SUSTAIN had a cluster whose

members were small birds, another cluster whose members were four-legged mammals and

SUSTAIN was asked to classify a bat, SUSTAIN would predict that a bat is a bird

because the bat would be more similar to the small bird cluster than to the four-legged

mammal cluster (bats are small, have wings, y, etc.). Upon receiving feedback (i.e.,

supervision) indicating that a bat is a mammal, SUSTAIN would recruit a new cluster to

represent the bat stimulus.1 In response to a prediction failure, SUSTAIN adds a cluster

centered in representational space upon the misclassi�ed input. The next time SUSTAIN

is exposed to the bat or another similar bat, SUSTAIN would correctly predict that a bat

is a mammal. This example also illustrates how SUSTAIN can entertain more complex

solutions when necessary (see Principle 1) through cluster recruitment.

An external oracle or teacher need not advise SUSTAIN on how to cluster items. In

cases in which there is no feedback (i.e., unsupervised learning), SUSTAIN is

self-supervising. SUSTAIN recruits a new cluster (centered upon the current example)

when the similarity between the cluster most similar to the current item and the current
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item is below a threshold. In such cases, the most similar cluster does not strongly enough

predict the current item and a new cluster is formed. This recruitment is analogous to the

supervised process. Like the supervised case, SUSTAIN entertains complex solutions

(involving numerous clusters) when necessary through cluster recruitment (driven by

prediction or expectation failure). In both unsupervised and supervised learning

situations, cluster recruitment is triggered by a surprising event.

Principle 4, the pattern of feedback matters.

As the example used above illustrates, feedback a�ects the inferred category

structure. Prediction failures on a queried dimension (e.g., the category label in

classi�cation learning) result in a cluster being recruited. Di�erent patterns of feedback

can lead to di�erent representations being acquired. As will be demonstrated later, this

principle allows SUSTAIN to predict di�erent acquisition patterns for di�erent learning

modes (e.g., inference versus classi�cation learning) that are informationally equivalent

but di�er in their pattern of feedback

Principle 5, cluster competition.

Clusters can be seen as competing explanations that attempt to explain the input.

As such, the strength of the response of the winning cluster (the cluster the current

stimulus is most similar to) is attenuated in the presence of other clusters that are

somewhat similar to the current stimulus (compare to Sloman's, 1997, account of

competing explanations in reasoning).

SUSTAIN's formalization

The previous section presented the principles that underly SUSTAIN. These

principles de�ne SUSTAIN at an abstract level. This section explains how those general

principles are manifested in an algorithmic model. The principles underlying SUSTAIN
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are more general than the equations that allow its predictions to be tested. The mapping

from SUSTAIN's underlying principles to possible formalisms is likely many to one. The

formalism presented here was chosen because it clearly reects SUSTAIN's principles,

allows predictions to be drawn readily, and facilitates comparisons to existing models. In

the interests of these goals, SUSTAIN's formalism is idealized (i.e., simpli�ed) when

possible. The alternative path would yield a convoluted model containing numerous

parameters and special conditions. This section is organized as follows: First, SUSTAIN's

input representation will be speci�ed. Next, SUSTAIN's parameters will be discussed.

Finally, the equations that determine SUSTAIN's behavior will be presented.

Stimulus and Trial Representation

Stimuli are represented as vector frames where the dimensionality of the vector is

equal to the dimensionality of the stimuli. The category label is also included as a

stimulus dimension. Thus, stimuli that vary on three perceptual dimensions (e.g., size,

shape, and color) and are members of one of two categories would require a vector frame

with four dimensions. All simulations in this paper involved nominal stimulus dimensions,

as opposed to continuous stimulus dimensions (which SUSTAIN can also represent). A

four dimensional binary-valued stimulus (e.g., three perceptual dimensions and the

category label) can be thought of as a four character string (e.g., 1 2 1 1) in which each

character represents a stimulus dimension (e.g., the �rst character could denote the size

dimension with a 1 indicating a small stimulus and a 2 indicating a large stimulus). This

notation will be used throughout the paper.

Of course, a learning trial usually involves an incomplete stimulus representation.

For instance, in classi�cation learning all the perceptual dimensions are known, but the

category label dimension is unknown and queried. After the learner responds to the query,

corrective feedback is provided. Assuming the fourth stimulus dimension is the category
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label dimension, the classi�cation trial for the above stimulus is represented as 1 2 1 ? !

1 2 1 1.

On every classi�cation trial, the category label dimension is queried and corrective

feedback indicating the category membership of the stimulus is provided. In contrast, on

inference learning trials, subjects are given the category membership of the item, but must

infer an unknown stimulus dimension. Possible inference learning trials for the above

stimulus description are ? 2 1 1 ! 1 2 1 1, 1 ? 1 1 ! 1 2 1 1, and 1 2 ? 1 ! 1 2 1

1. Notice that inference and classi�cation learning provide the learner with the same

stimulus information after feedback (though the pattern of feedback varies).

Both classi�cation and inference learning are supervised learning tasks.

Unsupervised learning does not involve informative feedback. In unsupervised learning,

every item is considered to be a member of the same category (i.e., the only category).

Thus, the category label dimension is unitary valued and uninformative.

In order to represent a nominal stimulus dimension that can display multiple values,

SUSTAIN devotes multiple input units. To represent a nominal dimension containing k

distinct values, k input units are utilized. All the units forming a dimension are set to

zero, except for the one unit that denotes the nominal value of the dimension (this unit is

set to one). For example, the stimulus dimension of marital status has three values

(\single", \married", \divorced"). The pattern [0 1 0] represents the dimension value of

\married". A complete stimulus is represented by the vector Iposik where i indexes the

stimulus dimension and k indexes the nominal values for dimension i. For example, if

marital status was the third stimulus dimension and the second value was present (i.e.,

married), then Ipos32 would equal one, whereas Ipos31 and Ipos33 would equal zero. The

\pos" in Ipos denotes that the current stimulus is located at a particular position in a

multi-dimensional representational space. Notice (see Figure 1) that SUSTAIN's output

unit layer mirrors the input layer.
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SUSTAIN's parameters

SUSTAIN's behavior is not extremely sensitive to the particular values of the

parameters. There are certain behaviors that SUSTAIN cannot display no matter how the

parameters are adjusted. The parameters are useful for �ne tuning SUSTAIN's

performance. The �rst four rows of Table 1 list SUSTAIN's basic parameters along with a

brief description of the function of each parameter, the symbol used to denote each

parameter, and the value that provides the best �t for each study (to be discussed later).

These four parameters are used to �t the data in all studies.

Insert Table 1 about here

Other parameters appear in particular studies. For example, in unsupervised

learning studies, SUSTAIN's cluster recruitment mechanism creates a new cluster when

the current item is not suÆciently similar to any existing cluster. This threshold is

captured by the parameter � . The parameter � can range between 0 and 1, but is

somewhat arbitrarily set to :5 for all simulations. We chose the intermediate value to

simplify the process of �tting and analyzing SUSTAIN. In other words, � could be treated

as a free parameter, but in the data �ts presented here it is treated as a �xed value.

Some simulations demanded that the input presentation be parameterized because

the original human learning study (from which the data simulated was drawn) did not

equate the saliency of a feature dimension to that of the other dimensions. This stimulus

parameter allowed SUSTAIN to alter the initial saliency of the uncontrolled dimension.

Mathematical Formulation of SUSTAIN

Each cluster has a receptive �eld for each stimulus dimension. A cluster's receptive

�eld for a given dimension is centered at the cluster's position along that dimension. The
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position of a cluster within a dimension indicates the cluster's expectations for its

members. Figure 2 shows two receptive �elds at di�erent positions.

Insert Figure 2 about here

The tuning of a receptive �eld (as opposed to the position of a receptive �eld)

determines how much attention is being devoted to the stimulus dimension. All the

receptive �elds for a stimulus dimension have the same tuning (i.e., attention is

dimension-wide as opposed to cluster-speci�c). A receptive �eld's tuning changes as a

result of learning. This change in receptive �eld tuning implements SUSTAIN's selective

attention mechanism. Dimensions that are highly attended to develop peaked tunings,

whereas dimensions that are not well attended to develop broad tunings. Figure 3 shows

two receptive �elds with di�erent tunings. Dimensions that provide consistent information

at the cluster level receive greater attention.

Insert Figure 3 about here

Mathematically, receptive �elds have an exponential shape with a receptive �eld's

response decreasing exponentially as distance from its center increases. The activation

function for a dimension is:

�(�) = �e��� (1)

where � is the tuning of the receptive �eld, � is the distance of the stimulus from the

center of the �eld, and �(�) denotes the response of the receptive �eld to a stimulus

falling � units from the center of the �eld. The choice of exponentially shaped receptive

�elds is motivated by Shepard's (1987) work on stimulus generalization.
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Although receptive �elds with di�erent � have di�erent shapes (ranging from a

broad to a peaked exponential), for any �, the area \underneath" a receptive �eld is

constant: Z
1

0
�(�)d� =

Z
1

0
�e���d� = 1: (2)

For a given �, the � that maximizes �(�) can be computed from the derivative:

@�

@�
= e��� (1� ��) : (3)

These properties of exponentials prove useful in formulating SUSTAIN.

With nominal stimulus dimensions, the distance �ij (from 0 to 1) between the ith

dimension of the stimulus and cluster j's position along the ith dimension is:

�ij =
1

2

viX
k=1

jIposik �H
posik

j
j (4)

where vi is the number of di�erent nominal values on the ith dimension, I is the input

representation (as described in a previous section), and H
posik

j
is cluster j's position on

the ith dimension for value k (the sum of all k for a dimension is 1). The position of a

cluster in a nominal dimension is actually a probability distribution that can be

interpreted as the probability of displaying a value given that an item is a member of the

cluster. To return to a previous example involving marital status, a cluster in which 20%

of the members are single, 45% are married, and 35% are divorced will converge to the

location [.20 .45 .35] within the marital status dimension. The distance �ij will always be

between 0 and 1 (inclusive).

The activation of a cluster is given by:

Hact

j =

P
m

i=1(�i)
re��i�ijP

m

i=1(�i)
r

(5)

where Hact

j
is the activation of the jth cluster, m is the number of stimulus dimensions, �i

is the tuning of the receptive �eld for the ith input dimension, and r is an attentional
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parameter (always nonnegative). When r is large, input units with tighter tunings (units

that seem relevant) dominate the activation function. Dimensions that are highly

attended to have larger �s and will have greater importance in determining the clusters'

activation values. Increasing r simply accentuates this e�ect. If r is set to zero, every

dimension receives equal attention. Equation 5 sums the responses of the receptive �elds

for each input dimension and normalizes the sum (again, highly attended dimensions

weigh heavily). Cluster activation is bound between 0 (exclusive) and 1 (inclusive).

Unknown stimulus dimensions (e.g., the category label in a classi�cation trial) are not

included in the above calculation.

Clusters compete to respond to input patterns and in turn inhibit one another.

When many clusters are strongly activated, the output of the winning cluster Hout

j
is less:

For the winning Hj with the greatest Hact,

Hout

j
=

(Hact
j

)�Pn

i=1
(Hact

i
)�
Hact

j

For all other Hj,

Hout

j
= 0:

(6)

where n is the number of clusters and � is the lateral inhibition parameter (always

nonnegative) that regulates cluster competition. When � is small, competing clusters

strongly inhibit the winner. When � is large the winner is weakly inhibited. Clusters

other than the winner have their output set to zero. Equation 6 is a straightforward

method for implementing lateral inhibition. It is a high level description of an iterative

process where units send signals to each other across inhibitory connections.

Psychologically, Equation 6 signi�es that competing alternatives will reduce con�dence in

a choice (reected in a lower output value).

Activation is spread from the clusters to the output units of the queried (the
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unknown) stimulus dimension z:

Cout

zk
=

nX
j=1

wj;zkH
out

j
(7)

where Cout

zk
is the output of the output unit representing the kth nominal value of the

queried (unknown) zth dimension, n is the number of clusters, and wj;zk is the weight

from cluster j to category unit Czk. A winning cluster (especially one that did not have

many competitors and is similar to the current input pattern) that has a large positive

connection to a output unit will strongly activate the output unit. The summation in the

above calculation is not really necessary given that only the winning cluster has a nonzero

output, but is included to make the similarities between SUSTAIN and other models more

apparent.

The probability of making response k (the kth nominal value) for the queried

dimension z is

Pr(k) =
e(d�C

out
zk

)P
vz

j=1 e
(d�Cout

zj
)

(8)

where d is a response parameter (always nonnegative) and vz is the number of nominal

units (and hence output units) forming the queried dimension z. When d is high, accuracy

is stressed and the output unit with the largest output is almost always chosen. The Luce

choice rule is conceptually related to this decision rule (Luce, 1959).

After responding, feedback is provided to SUSTAIN. The target value for the kth

category unit of the queried dimension z is:

tzk =

8>><
>>:

max(Cout

zk
; 1), if Iposzk equals 1.

min(Cout

zk
; 0), if Iposzk equals 0.

9>>=
>>; (9)

Kruschke (1992) refers to this kind of teaching signal as a \humble teacher" and explains

when its use is appropriate. Basically, the model is not penalized for predicting the correct

response more strongly than is necessary.
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A new cluster is recruited if the winning cluster predicts an incorrect response. In

the case of a supervised learning situation, a cluster is recruited according to the following

procedure:

For the queried dimension z,

if tzk does not equal 1 for the Czk

with the largest output Cout

zk
of all Cz�,

then recruit a new cluster.

(10)

In other words, the output unit representing the correct nominal value must be the most

activated of all the output units forming the queried stimulus dimension. In the case of an

unsupervised learning situation, SUSTAIN is self-supervising and recruits a cluster when

the most activated cluster Hj's activation is below the threshold � :

if (Hact

j
< �), then recruit a new cluster. (11)

Unsupervised recruitment in SUSTAIN bears a strong resemblance to recruitment in

Adaptive Resonance Theory, Clapper and Bower's (1991) qualitative model, (Carpenter &

Grossberg, 1987) and Hartigan's (1975) leader algorithm.

When a new cluster is recruited (for both unsupervised and supervised learning

situations) it is centered on the misclassi�ed input pattern and the clusters' activations

and outputs are recalculated. The new cluster then becomes the winner because it will be

the most highly activated cluster (it is centered upon the current input pattern | all �ij

will be zero). Again, SUSTAIN begins with a cluster centered on the �rst stimulus item.

The position of the winner is adjusted:

For the winning Hj,

�H
posik

j
= �(Iposik �H

posik

j
)

(12)

where � is the learning rate. The centers of the winner's receptive �elds move towards the

input pattern according to the Kohonen learning rule. This learning rule centers the

cluster amidst its members.
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Using our result from Equation 3, receptive �eld tunings are updated according to:

��i = �e��i�ij (1� �i�ij) (13)

where j is the index of the winning cluster.

Only the winning cluster updates the value of �i. Equation 13 adjusts the

peakedness of the receptive �eld for each input so that each input dimension can maximize

its inuence on the clusters. Initially, �i is set to be broadly tuned with a value of 1. The

value of 1 is chosen because the maximal distance �ij is 1 and the optimal setting of of �i

for this case is 1 (i.e., Equation 13 equals zero). Under this scheme, �i cannot become less

than 1, but can become more narrowly tuned.

When a cluster is recruited, weights from the unit to the output units are set to zero.

The one layer delta learning rule (Widrow & Ho�, 1960) is used to adjust these weights:

�wj;zk = �(tzk � Cout

zk )Hout

j : (14)

where z is the queried dimension. Note that only the winning cluster will have its weights

adjusted since it is the only cluster with a nonzero output.

Comparing SUSTAIN to other category learning models

SUSTAIN is motivated by its own principles, but nevertheless shares many

commonalities with other models of category learning. Despite the commonalities, none of

the models considered can account for the majority of the human learning studies that

SUSTAIN will be applied to later in this paper.

The con�gural-cue model

Category learning in Gluck and Bower's (1988) con�gural-cue model involves

forming associations between a �xed feature set and output units. A category is de�ned

by its associations with the input features. Associations are formed by an incremental
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learning process akin to linear regression (i.e., the one-layer delta learning rule). Unlike

SUSTAIN, the con�gural-cue model does not have intermediate units or an attentional

mechanism. The input representation of the con�gural-cue model consists of all possible

combinations and subsets of combinations of all feature values (i.e., the power set). This

mode of representation leads to computational problems. For example, to represent

stimuli consisting of only three binary valued feature dimensions (e.g., a large white

triangle), the con�gural cue model needs 26 input units of which 7 are activated to encode

a stimulus (e.g., large, white, triangle, large & white, large & triangle, white & triangle,

large & white & triangle). The total number of input units required grows exponentially

with the number of input dimensions, making the model untenable for problems with

moderate dimensionality. For example, with three input dimensions that consist of binary

features, the con�gural cue model needs 26 input units, but to represent 10 binary

features the model needs 59,048 input units.

SUSTAIN input representation does not increase exponentially with the number of

input dimensions because SUSTAIN discovers the relevant feature combinations and

encodes them in its intermediate layer (i.e., as clusters). The combinations are discovered

through unsupervised learning between the input and intermediate layer in conjunction

with cluster recruitment. The selective attention mechanism plays a role in stressing

which aspects of the clusters are most critical. Like the con�gural-cue model, SUSTAIN

uses the one-layer delta rule to adjust weights terminating at an output unit.

Rule-plus-exception (RULEX) model

Although not apparent on the surface, there are deep commonalities between

SUSTAIN and rule-based models like RULEX (Nosofsky et al., 1994). In trying to master

a classi�cation learning problem, RULEX �rst considers rules that are one dimensional

(e.g., if value 1 is present on the second dimension, then classify the item as a member of
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category \A"). When a problem is not mastered by the rule, exceptions are encoded, or

more complex rules are considered. Like RULEX, SUSTAIN �rst considers simple \rules"

(i.e., solutions involving a small number of clusters), then encodes exceptions (i.e.,

additional clusters recruited through prediction failure) which can evolve into more

complex rules. SUSTAIN's selective attention mechanism also bias it to initially search for

simple \rules" that range over as few stimulus dimensions as possible. SUSTAIN's clusters

can sometimes be interpreted as implementing rules (i.e., disjunctions of conjunctions in

�rst order logic). RULEX and SUSTAIN do di�er in important ways though. RULEX is a

model of classi�cation learning with two mutual exclusive categories. SUSTAIN is

intended to be a more general model of learning. SUSTAIN's rule-like behavior is an

emergent property that is displayed when mastering certain classi�cation learning

problems.

The rational model

Anderson's rational model (Anderson, 1991) is a clustering model. Like SUSTAIN,

the rational model begins with one cluster and adds clusters incrementally. Both models

attempt to capture and explicitly represent the substructure of categories. The rational

model's principle goal is to uncover a cluster structure that captures statistical regularities

in the environment, whereas SUSTAIN recruits clusters in response to prediction failures.

This distinction, while subtle, proves important. The rational model does not organize its

knowledge structures around its current goals and task environment. The rational model's

goal is always the same | to capture the statistical structure of the world. In addition to

being sensitive to the structure of the world, SUSTAIN is also sensitive to the learning

task and the current goals. For instance, SUSTAIN can come up with two very di�erent

internal representations for a category depending on whether SUSTAIN is engaged in

inference or classi�cation learning. The rational model would not. A related point is that
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SUSTAIN, unlike the rational model, treats category labels or other dimensions that need

to be predicted (i.e., that are queried) di�erently than non-queried stimulus dimensions.

For instance, in classi�cation learning, the category label plays an important role in

directing the organizing of SUSTAIN's internal representations. Both the rational model

and SUSTAIN seek to unify various learning modes under one model | a key di�erence is

that SUSTAIN holds that di�erent learning modes lead to di�erent internal

representations.

An important architectural di�erence between the two models is that the rational

model is Bayesian. SUSTAIN makes predictions by focusing on the cluster that is most

similar to the current item. The rational model makes predictions based on a weighted

sum over all clusters, instead of basing the response on the most active cluster. Recent

work (Murphy & Ross, 1994; Malt, Murphy, & Ross, 1995) suggests that SUSTAIN's

focus on the most likely possibility may be in accord with human performance. Subjects

predict the value of a missing feature (loosely, this can be viewed as a category response)

based on the base rate information of the most likely cluster, as opposed to a weighted

sum across the probabilities of all clusters (as the rational model or any other Bayesian

approach does). SUSTAIN's ability to �t an array of data by only considering the most

active cluster provides further support for the notion that humans may not fully consider

alternative clusters after a winning cluster has been selected.

Abstract approaches

Although the rational model is formulated at a fairly abstract level, it is nevertheless

a model that contains parameters and learns on a trial by trial basis. Other models are

even more abstract. For example, General Recognition Theory (Ashby & Townsend, 1986;

Maddox & Ashby, 1993) does not attempt to characterize trial by trial learning, but

rather attempts to provide a concise description of human performance at asymptote.
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Such an approach can o�er insights into human performance through comparison of

human performance to that of an ideal observer (i.e., classi�er). Although valuable, this

approach (in the absence of auxiliary assumptions) does not provide an explanation for

why human performance deviates from optimal or how learners reach asymptote.

Unlike SUSTAIN, the majority of abstract models are not formulated at the

algorithmic level (i.e., many abstract models are not concerned with specifying the

processes critical to human learning). Instead, many abstract models are computational

level models (in the sense of Marr, 1982). These approaches view category learning as a

function learning problem that maps inputs (i.e., stimuli) to outputs (i.e., categories).

These approaches attempt to characterize the diÆculty human learners will have with

di�erent \functions" or category partitions. Examples of computational level approaches

include (Corter & Gluck, 1992; Feldman, 2000; Gosselin & Schyns, 2001).

Computational level approaches are not suitable for addressing how di�erent

learning modes lead to di�erent patterns of acquisition or the importance of goals in

learning. These approaches are either not applicable to these questions or make incorrect

predictions. SUSTAIN is formulated in way that allows it to address these questions.

SUSTAIN is motivated by a set of abstract principles, but these principles are not solely

concerned with the structure of the world. SUSTAIN is an important step in

understanding how subjects (algorithmicly) store and combine information about stimuli

under a variety of learning conditions.

Exemplar based approaches

Exemplar models (Hintzman, 1986; Medin & Scha�er, 1978; Nosofsky, 1986) store

training instances in memory and classify stimulus items by computing the similarity of

the current item to every previous exemplar. The item is then classi�ed according to

which exemplars it is most similar to overall (e.g., if a test item is very similar to many
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category \A" members, then an exemplar model will predict the test item is a member of

category \A"). Exemplar models have been very successful as models of human category

learning (see Estes, 1994). Exemplar models di�er from SUSTAIN on a number of fronts.

Perhaps the most important di�erence is that all abstraction in exemplar models is

indirect whereas in SUSTAIN it is direct. Exemplar models form abstractions by

interpolating across the responses of many stored representations. In this regard,

exemplar models are similar to the rational model (see Nosofsky, 1991a, for a comparison

of the generalized context model, an exemplar model, and the rational model). In

contrast, SUSTAIN focuses on the dominant cluster and directly stores its abstractions.

Exemplar models expand their internal representations with every training example,

whereas SUSTAIN is more economical in its storage and only stores an example as a

separate cluster when a prediction error occurs. Storage in SUSTAIN is therefore

dependent on what is already stored in memory and the pattern of feedback (which allows

SUSTAIN to predict that the same stimulus information can result in di�erent internal

representation when the learning mode or the current goals vary). The exemplar model

most comparable to SUSTAIN is ALCOVE (Kruschke, 1992). ALCOVE blends

connectionist learning rules with an exemplar category representation (i.e., the hidden

units are exemplars). Like SUSTAIN, ALCOVE has a selective attention mechanism that

orients it towards the most predictive stimulus dimensions. ALCOVE has been a very

successful model of human learning. Because of its success and the fact that comparisons

between ALCOVE and SUSTAIN serve to highlight SUSTAIN's properties, SUSTAIN's

performance will be compared to ALCOVE's throughout this paper. The Appendix

provides details on ALCOVE for the interested reader.
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Overview of the Human Data Sets �t by SUSTAIN

This section provides a brief overview of the data sets to which SUSTAIN will be

applied. The majority of category learning research (and particularly research in category

learning modeling) has exclusively focused on supervised classi�cation learning. Category

learning models have been able to �t data from this paradigm in impressive detail (e.g.

Kruschke, 1992; Nosofsky, 1991b, Estes, 1994). We believe, however, that it is important

for categorization models to address a range of tasks and conceptual functions. Although

supervised category learning represents an important mode of acquisition to study, it is

only one way out of many to learn about categories. Focusing exclusively on a single

learning mode is a serious limitation for any theory that intends to explain category

learning and generalization in any comprehensive sense (Love, in press; Schank, Collins, &

Hunter, 1986). Thus, the studies �t here, while making connections to foundational

studies in classi�cation learning, primarily focuses on expanding the applicability of

models to other induction tasks.

Collectively, the studies to be reviewed present a strong test of any model of human

category learning. Only one of the following studies has been successfully �t by other

models of category learning. Some of the studies involve learning procedures that are

outside the boundary conditions of many category learning models. These studies address

issues in category learning that are critical, but have nevertheless not received a great deal

of attention from modelers. SUSTAIN's �t of these data sets hinges on how its principles

guide it towards uncovering category substructures (i.e., the clusters).

Foundational Classi�cation Learning Findings

The �rst data set considered is Nosofsky, Gluck, Palmeri, McKinley, & Glauthier's

(1994) replication of Shepard, Hovland, and Jenkins's (1961) classi�cation learning

studies. In these studies, human subjects learn to classify geometric stimuli into one of
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two categories (either category \A" or \B"). Stimuli consist of three perceptual binary

valued stimulus dimensions and a category label, which we will view as the fourth

stimulus dimension. The category label is queried on every trial and feedback is provided

that indicates the correct category assignment. Six di�erent mappings of stimuli to

categories (i.e., six di�erent learning problems) are examined and the challenge for models

is to predict the relative diÆculty of the di�erent structures. Although some other

learning models can �t Shepard et al.'s (1961) six classi�cation learning problems,

SUSTAIN's solution is novel and illustrates how SUSTAIN adapts its complexity to match

the complexity of the learning problem. All other learning studies �t by SUSTAIN have

proven diÆcult for other learning models to address.

Learning at Di�erent Levels of Abstraction

The second study SUSTAIN �ts is Medin, Dewey, and Murphy's (1983) studies

comparing identi�cation learning (learning in which each stimulus is assigned to its own

singleton category ) with category learning (many to one mapping of stimuli onto

categories). Shepard et al. had also compared identi�cation and categorization and found

that identi�cation learning appeared to represent an upper bound on the diÆculty of

categorization learning. Learning problems requiring item memorization should be more

diÆcult than learning problems that promote abstraction and many models of

categorization are constrained to predict that categorization will be, at worst, no harder

than identi�cation. Unlike Shepard et al. (1961), Medin et al. (1983) used distinctive

stimuli (photographs of faces) and found that identi�cation learning was actually more

eÆcient than classi�cation learning. As we shall we, SUSTAIN o�ers an explanation for

this counter-intuitive �nding. SUSTAIN's explanation is then tested in an experiment

involving human subjects that replicates and extends Medin et al.'s (1983) original study

(Love, 2000).
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Comparing Inference and Classi�cation Learning

Inference learning is closely related to classi�cation learning. In inference learning,

the category label is known, but one of the perceptual dimensions is unknown and is

queried. Like classi�cation learning, inference learning is supervised and the learner

receives corrective feedback. After receiving feedback the stimulus information available to

the learner is equivalent in both inference and classi�cation learning.

SUSTAIN is �t to a series of experiments (Yamauchi et al., 2001; Yamauchi &

Markman, 1998) comparing human inference and classi�cation learning. The basic �nding

is that inference learning promotes a focus on each category's prototype, whereas

classi�cation learning focuses human learners on information that discriminates between

the categories. Accordingly, inference learning is more eÆcient than classi�cation learning

for linear category structures in which the category prototypes successfully segregate

members of the contrasting categories, but is less eÆcient than classi�cation learning for

nonlinear category structures in which the prototypes are of limited use. SUSTAIN is able

to explain how these di�erent patterns of behavior emerge from two learning tasks that

are structurally equivalent.

Unsupervised Learning

In unsupervised learning, learners do not receive corrective feedback from an

external oracle, but are instead free to impose their own organization onto the stimulus

set. In unsupervised learning, each stimulus may be viewed as belonging to the same

category and learners search for appropriate substructures in order to characterize the

category. The idea is to see how learners spontaneously organize categories. SUSTAIN is

�t to Billman and Knutson's (1996) human unsupervised learning studies. Billman and

Knutson's studies explore how humans learn correlations among stimulus dimensions. In a

series of experiments, Billman and Knutson �nd that intercorrelated structures (e.g.,
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cor(A,B), cor(B,C)) are easier to learn than structures that are not intercorrelated (e.g.,

cor(A,B), cor(C,D)).2 SUSTAIN prefers the category structures that human learners

prefer.

SUSTAIN also addresses the unsupervised category construction studies of Medin,

Wattenmaker, and Hampson (1987). In category construction (i.e., sorting studies),

human subjects are given cards depicting the stimuli and freely sort the cards into piles

that naturally order the stimuli. In other words, human subjects sort the stimuli into the

natural substructures of the category. Medin et al. (1987) found (under several

manipulations) that humans tend to create unidimensional sorts (e.g., place all the small

stimuli in one pile and all the large stimuli in a second pile) even when the stimuli are

intercorrelated across all stimulus dimensions and could be naturally partitioned into two

piles that respect these intercorrelations. This �nding serves as a counterpoint to Billman

and Knutson's (1996) �ndings that demonstrate an advantage in learning intercorrelated

structures. As we shall see, SUSTAIN reconciles this seemingly conicting pattern of

results.

Summary

The human data SUSTAIN will address in this paper are drawn from classic studies

in classi�cation learning, studies in learning at di�erent levels of abstraction, studies

comparing classi�cation and inference learning, and studies in unsupervised learning. The

data considered cover a broad spectrum of category learning phenomena involving

learning from examples. The total pattern of results may appear to give a fractured or

even contradictory view of category learning. However, SUSTAIN provides a coherent

view of this data that follows in a straightforward manner from its principles. The point

of �tting SUSTAIN to these data sets is not to merely �t data that other models cannot

�t, but rather to increase our understanding of human category learning by highlighting
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the relations between these data sets.

Empirically Testing SUSTAIN

The best �tting parameters for each study were found using PGAPack parallel

genetic algorithm software (Levine, 1996). PGAPack searched the parameter space in

order to discover the parameter values that minimized the di�erence (in terms of root

mean-square error) between SUSTAIN's mean performance and that of human subjects

(averaged over subjects). ALCOVE was �t using the same procedure. In previous work,

SUSTAIN has been qualitatively �t to a variety of studies (including the majority of the

studies considered here) using only one set of parameters (Love, 1999). More recently,

these same parameters were used to address basic inference and classi�cation learning

acquisition patterns (Love et al., 2000). The computational requirements inherent in

quantitatively �tting the array of studies considered here with one set of parameters is

prohibitive and will not be attempted. Fortunately, this is not a major drawback because

it is clear how SUSTAIN's principles allow it to account for the data from each study.

SUSTAIN allows conceptual relations to be drawn between the various studies. The

parameters serve to �ne tune, rather than drastically alter, SUSTAIN's behavior.

Modeling Shepard, Hovland, and Jenkins (1961)

Shepard et al.'s (1961) classic experiments on human category learning provide

challenging data to �t. Human subjects learned to classify eight items that varied on three

perceptual binary dimensions (shape, size, and color) into two categories (four items per

category). On every trial, subjects assigned a stimulus to a category and feedback was

provided. Subjects were trained for 32 blocks or until the subject completed four

consecutive blocks without an error. For every study in this paper, a block is de�ned as

the presentation each item in a random order. Six di�erent assignments of items to
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categories were tested with the six problems varying in diÆculty (Type I was the easiest

to master, Type II the next easiest, followed by Types III-V, and Type VI was the

hardest). The logical structure of the six problems is shown in Table 2.

Insert Table 2 about here

The Type I problem only requires attention along one input dimension, whereas the

Type II problem requires attention to two dimensions (Type II is XOR with an irrelevant

dimension). The categories in the Type II problem have a highly nonlinear structure.

Types III-V require attention along all three perceptual dimensions but some regularities

exist (Types III-V can be classi�ed as rule plus exception problems). Type IV is notable

because it displays a linear category structure (i.e., Type IV is learnable by a prototype

model). Type VI requires attention to all three perceptual dimensions and has no

regularities across any pair of dimensions.

Insert Figure 4 about here

Nosofsky et al. (1994a) replicated Shepard et al. (1961) with more human subjects

and traced out learning curves. Figure 4 shows the learning curves for the six problem

types. The basic �nding is that Type I is learned faster than Type II which is learned

faster than Types III-V which are learned faster than Type VI. This data is particularly

challenging for learning models as most models fail to predict Type II easier than Types

III-V. The only models known to reasonably �t these data are ALCOVE (Kruschke, 1992)

and RULEX (Nosofsky et al., 1994). SUSTAIN's �t of Nosofsky et al.'s (1994a) data is

shown in Figure 4. The procedure used to simulate SUSTAIN mimicked the procedure
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used to collect data from the human subjects (i.e., random presentation of items in blocks,

the same learning criterion, feedback on every trial, etc.). The best �tting parameters are

shown in Table 1 under the heading six types.

How SUSTAIN Solves the Six Problems

SUSTAIN is not a black box and it is possible to understand how it solves a

learning problem (perhaps providing insight into the problem itself). We will now detail

how SUSTAIN solves the six problems. The most common solution for the Type I

problem is to recruit one cluster for each category. Type I has a simple category structure

(the value of the �rst dimension determines membership). Accordingly, SUSTAIN solves

the problem with only two clusters and shifts its attention almost exclusively to the �rst

dimension (i.e., the value of � for the �rst dimension is much larger than the value for the

other two dimensions). Type II requires attention to two dimensions. SUSTAIN solves the

Type II problem by allocating two clusters for each category. Each cluster responds to two

input patterns, largely ignoring the irrelevant dimension. Because category members are

highly dissimilar (e.g., 1 2 1 B and 2 1 2 B are in the same category), SUSTAIN forms

two clusters for each category (ignoring di�erences on the irrelevant dimension).

Types III-V display a variety of solutions. The learning curves for Types III-V in

Figure 4 reect averaging over a family of solutions. Again, SUSTAIN is a trial by trial

model of human category learning and incrementally uncovers the category structure of a

classi�cation problem. Di�erent solutions arise (primarily) because di�erent sequences of

items occur on di�erent training runs. For the Type III problem, the majority of solutions

are of two varieties. The most common solution requires six clusters. Two clusters are

created that each respond to two stimulus items (matching on the �rst two input

dimensions). The remaining four clusters capture exceptions (i.e., each cluster is only

strongly activated by one stimulus item). This solution allows attentional resources to be
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partially deployed to the �rst two dimensions. A less common solution only requires four

clusters. Each cluster responds to two input patterns (matching on two dimensions).

When this less common solution occurs, SUSTAIN masters the Type III problem more

quickly than when the more common six cluster solution arises.

SUSTAIN's most common solution for the Type IV problem is to recruit six clusters

with two of the clusters having two members each (again, clustered items have two input

dimensions in common) and with four clusters each encoding one stimulus item. The Type

V problem is solved essentially the same way as the Type IV problem. One interesting

di�erence between the Type IV and Type V problem is that SUSTAIN occasionally solves

the Type IV problem with only two clusters (again, the modal solution to the Type IV

problem requires six clusters). Runs displaying this infrequent solution reach learning

criterion much faster than the modal Type IV solution. Although Type IV is a relatively

diÆcult problem for people to master, the two cluster solution is possible because a linear

discriminant function (over all three perceptual dimensions) can separate the category \A"

and \B" items (i.e., any stimulus item in Table 2 with two or more input dimensions that

have the �rst value is a member of category \B"). Even when this rare two cluster solution

occurs because of a favorable ordering of training items, SUSTAIN still takes longer to

master the Type IV problem than the Type I problem (the modal solution for the Type I

problem also utilizes two clusters) because SUSTAIN tends to prefer solutions that involve

fewer dimensions. Humans also �nd unidimensional problems easier to master than other

linear problems that require attending to multiple dimensions (Ashby, Alfonso-Reese,

Turken, & Waldron, 1998; Ashby, Queller, & Berretty, 1999; McKinley & Nosofsky, 1996).

SUSTAIN solved the �rst �ve problem types by uncovering regularities and

memorizing exceptions (devoting a unit for one item). Type VI has no regularities that

can be exploited, forcing SUSTAIN to \memorize" each item (i.e., SUSTAIN devotes a

cluster to each input pattern). In summary, for Shepard et al.'s (1961) six problems, the
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diÆculty level of the problem is correlated with the number of clusters required to solve

the problem. The modal solution to the Type I problem requires two clusters; Type II

requires four clusters; Types II-V each require six clusters; and Type VI requires eight

clusters. The Shepard et al. problems illustrate SUSTAIN's preference for simple solutions

and how SUSTAIN matches its complexity to that of the learning problem. The �t also

clearly illustrated how feedback a�ects the inferred category structure (all six problems

involved the same eight items, but with di�erent patterns of feedback), and the interplay

between unsupervised and supervised learning processes.

SUSTAIN's Principles: Item versus Category Learning

As we have seen, the number of clusters SUSTAIN recruits varies with problem

diÆculty. For example, the most common solution for the Type I problem involves

recruiting one cluster for each category. In contrast, the Type VI problem has no

regularities that can be exploited, forcing SUSTAIN to \memorize" each stimulus (i.e.,

SUSTAIN devotes a cluster to each input pattern).

The Type VI problem is in some ways equivalent to identi�cation learning (where

each stimulus has a di�erent label or category membership) whereas the Type I problem

seems like a \pure" categorization problem (there is a simple criterion for membership, the

categories are cohesive). It is tempting to conclude from the relative diÆculty of the Type

VI problem that identi�cation learning is always more diÆcult than category learning.

Contrary to this conclusion and contrary to the predictions of other categorization models,

there are striking instances where identi�cation precedes categorization.

For example, Medin et al. (1983) found that people are faster to associate unique

names to photographs of nine female faces than they are to categorize the photographs

into two categories. The logical structure of the two categories is shown in Table 3 (the

logical structure of the categories is roughly equivalent to Shepard et al.'s Type IV
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problem). One key di�erence between the stimuli used in Medin et. al.'s (1983) studies

and in Shepard et al.'s (1961) studies that could have led to the identi�cation learning

advantage is that the stimuli used in Medin et. al (1983) were rich and distinct, varying

along many dimensions not listed in Table 3, such as the shape of the face, the type of

nose, etc.. This idiosyncratic information makes each stimulus item more distinct.

SUSTAIN correctly predicts that the relative rates of identi�cation and

categorization learning interact with the nature of the stimuli. Speci�cally, when the

stimuli are highly distinct, identi�cation learning is faster than categorization. The

properties of SUSTAIN that give rise to this behavior will be discussed after simulation

results are presented for Medin et al. (1983).

Modeling Medin et al. (1983)

Here, we focus on the First Name and Last Name conditions from Medin et al.

(1983). In the First Name condition subjects learned a separate label for each photograph

(i.e., identi�cation learning), whereas in the Last Name condition only two labels were

used (category learning). The logical structure of the two conditions is shown in Table 3.

In both conditions, subjects were trained (using the classi�cation learning procedure) until

they correctly classi�ed all nine items for consecutive blocks or until they completed the

sixteenth learning block. Feedback was provided after each response.

Insert Table 3 about here

The results from Medin et al. (1983) are shown in Table 4. The mean number of

learning blocks required by subjects was 7.1 in the First Name condition and 9.7 in the

Last Name condition. Also, accuracy overall was roughly equal, even though chance

guessing favored the Last Name condition (i.e., pure guessing would result in 1/2 correct
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compared to 1/9 correct). When the First Name condition is rescored to account for

guessing by scoring any label within the same category (\A" or \B") as correct, overall

accuracy rises to 91%, reliably higher than performance in the Last Name condition.

Insert Table 4 about here

To �t SUSTAIN to the data, certain assumptions had to be made about the nature

of the input representation. Because subjects were sensitive to the idiosyncratic

information in each photograph, an additional input dimension was added to each item.

The added dimension was nominal and displayed nine unique values (each stimulus

displayed a unique value). Each stimulus's unique value on the added dimension

represented the idiosyncratic information in each photograph (e.g., each person had a

slightly di�erent nose, shape of face, etc.). The added dimension has the e�ect of making

each stimulus more distinctive. Of course, the saliency of this collective dimension is not

matched to that of the four binary valued perceptual dimensions in the original Medin et

al. (1983) study. To account for the likely saliency di�erences, an additional parameter

�distinct was added to SUSTAIN. The additional parameter allowed SUSTAIN to initially

weight the distinctive dimension di�erently than the other dimensions (dimensions

normally have an initial � of 1). In other words, we remained agnostic on the relative

saliency of idiosyncratic information and allowed the model �tting procedure to choose the

desired level.

SUSTAIN was able to capture the correct pattern of results with this

parameterization (see Table 4). The best �tting parameters are shown in Table 1 under

the heading �rst/last name. It is worth noting that ALCOVE (with the added �distinct

parameter) could not predict a First Name advantage. Like people, SUSTAIN found it

more natural to identify each stimulus than it did to associate several stimuli to a common
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label. SUSTAIN correctly predicts that overall accuracy between the two conditions

should be roughly equal, that more learning blocks should be required in the Last Name

condition than in the First Name condition, and that a greater proportion of learning runs

should reach criterion in the First Name condition than in the Last Name condition.

SUSTAIN recruited more clusters (nine for each simulation) in the First Name

condition than in the Last Name condition (the modal solution involved seven clusters). It

is important to note that abstraction did not occur in the First Name condition (i.e., each

cluster responded to only one item), but did occur in the Last Name condition.

Interestingly, when SUSTAIN's input representation does not include idiosyncratic

information (i.e., the added stimulus dimension is removed), the Last Name condition

(criterion: .95, overall: .88) is easier to master than the First Name condition (criterion:

.37, overall: .60). SUSTAIN predicts a strong interaction between stimulus distinctiveness

and the learning task.

Why SUSTAIN favors identi�cation over categorization in Medin et al. (1983)

Two factors conspire to cause SUSTAIN's performance to interact with the nature

of the stimuli. As the stimuli become more distinctive, clusters that respond to multiple

items are not as strongly activated. In other words, the bene�t of abstraction is

diminished with distinctive stimuli. This occurs because distinctive items sharing a cluster

are not very similar to each other (i.e., within cluster similarity is low). Notice that the

diminished bene�t of abstraction negatively impacts performance in the Last Name

condition, but does not a�ect the First Name condition. In identi�cation learning, each

item forms its own cluster (within cluster similarity is always maximal). When SUSTAIN

is altered so that it does not form abstractions in either condition, but instead recruits a

cluster for each item, SUSTAIN fails to predict the interaction or the First Name

condition advantage, suggesting that abstraction is critical for capturing this e�ect.
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Without abstraction, the inferred category structures (i.e., the clusters recruited) are

identical for both conditions. Notice that in exemplar models (which fail to capture the

data), the internal representations for the First Name and Last Name conditions are the

same (nine exemplars), though the weightings of the exemplars di�er.

The second factor that leads SUSTAIN to predict that distinctiveness and category

level should interact is that the e�ects of cluster competition are attenuated with

distinctive stimuli. As items become more distinctive, the clusters that are recruited tend

to be further separated in representational space (i.e., the clusters match on fewer

dimensions and mismatch on more dimensions). In other words, the clusters become more

orthogonal to one another. The more distinctive the clusters are, the less they will tend to

compete with one another. For instance, when a distinctive stimulus is presented to

SUSTAIN, it will tend to strongly activate the appropriate cluster and will only weakly

activate the competing clusters. Reduced cluster competition with distinctive stimuli

favors both identi�cation and category learning, but di�erentially bene�ts identi�cation

learning because there are generally more clusters present (i.e., potential competitors) in

identi�cation learning. Simulations support this analysis. When SUSTAIN is modi�ed so

that clusters do not compete, SUSTAIN reaches criterion more often and overall accuracy

is higher in the Last Name condition.

In summary, two factors, one related to abstraction and one to cluster competition,

were responsible for SUSTAIN predicting that that distinctiveness and category level

should interact such that distinctiveness di�erentially favors identi�cation learning over

category learning. These results suggest that SUSTAIN may prove successful in explaining

why certain categories are more natural or basic than others (Gosselin & Schyns, 2001,

Rosch et al., 1976). For example, if asked how one gets to work in the morning, one says,

\I drive my car," as opposed to \I drive my Buick," or \I drive my vehicle." SUSTAIN

o�ers an explanation for why a level of categorization is preferred. In the above example,
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the intermediary category car balances the need to create clusters that have a high degree

of within cluster similarity and low degree of between cluster similarity while minimizing

the total number of clusters. Also, SUSTAIN's shift towards lower level categories in the

presence of more distinctive inputs may be in accord with shifts in preferred category level

with expertise (Johnson & Mervis, 1997; Tanaka & Taylor, 1991).

Further tests of SUSTAIN's account of Medin et al.'s (1983) data

SUSTAIN's ability to �t Medin et al.'s (1983) studies on item and category learning

is notable because other models cannot predict the advantage for identi�cation learning or

the interaction between learning task and stimulus distinctiveness. More importantly,

SUSTAIN o�ers a framework for understanding the results. At the same time time, it

seems important to place SUSTAIN's account of these �ndings on �rmer ground. To begin

with, one should be cautious about accepting SUSTAIN's characterization of Medin et

al.'s (1983) results. SUSTAIN's successful �t of Medin et al.'s (1983) studies depended on

our choice of input representation. The idiosyncratic information in each photograph was

represented by an additional input dimension. Each item had a unique value on the added

dimension. This manipulation had the e�ect of making all the items less similar to one

another.

The general intuition that guided our choice of input representation seems justi�ed.

Unlike arti�cial stimuli, the photographs do vary along a number of dimensions. Still,

replicating the results from Medin et al. (1983) under more controlled circumstances with

arti�cial stimuli would bolster our claims. For instance, it is possible that there may be

something \special" about faces (c.f., Farah, 1992), though there is evidence to the

contrary suggesting that experience alone may be able to explain much of the data cited

in favor of face speci�c recognition systems (Diamond & Carey, 1986; Gauthier & Tarr,

1997; Rhodes, Tam, Brake & Taylor, 1989). Nevertheless, humans do have a lot
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experience in processing faces and it is important to replicate the basic behavioral �ndings

from Medin et al. (1983) with di�erent stimuli.

Love (2000) ran a study with human subjects that directly supports SUSTAIN's

account of Medin et al.'s data using arti�cial stimuli (schematic cars). Whereas Medin et

al. featured a distinctive/identi�cation learning condition (i.e., the First Name condition)

and a distinctive/category learning condition (i.e., the Last Name condition), Love (2000)

included these two conditions along with a non-distinctive/identi�cation learning

condition and a non-distinctive/category learning condition, thus yielding a 2 X 2 factorial

design (learning task: identi�cation or category learning X stimulus type: distinctive or

non-distinctive). In the distinctive conditions, each stimulus was a unique color. In the

nondistinctive conditions, each stimulus was the same color. SUSTAIN predicts that the

learning task (identi�cation or category learning) and the stimulus type (distinctive or

nondistinctive) should interact such that identi�cation learning will bene�t more from

distinctive stimuli than category learning. As in Medin et al. (1983), identi�cation

learning should be easier than category learning with distinctive stimuli. These

predictions we

re con�rmed.

Modeling category learning by inference and classi�cation

Classi�cation is clearly an important function of categories. Classifying an item

allows category knowledge to be utilized. Inference is also a critical function of categories.

For example, once we know a politician's party aÆliation we can infer his or her stance on

a number of issues. A number of studies have been directed at the way categories are used

to make predictions (e.g., Heit & Rubinstein, 1994; Lassaline, 1996; Osherson, Smith,

Wilkie, Lopez, & Sha�r, 1990; Rips, 1975; Yamauchi & Markman, 2000).

In this section, we explore the di�erent patterns of acquisition that result from
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classi�cation and inference learning. As previously noted, the same information is

available to the learner in classi�cation and inference learning. The critical di�erence is

that in inference learning the learner is always given the category membership of a

stimulus item and infers the value of an unknown perceptual dimension (the dimension

queried varies across trials), whereas in classi�cation learning the learner is always given

the value of the perceptual dimensions and infers the category membership of the item.

These two learning modes focus human learners on di�erent sources of information and

lead to di�erent category representations. Inference learning tends to focus subjects on

the internal structure or prototype of each category whereas classi�cation learning tends

to focus subjects on information that discriminates between the two categories (Yamauchi

et al., 2001; Yamauchi & Markman, 1998).

Insert Table 5 about here

Accordingly, the diÆculty of mastering a learning problem can be dependent on

which of these two learning modes in engaged. The basic interaction observed between

inference and classi�cation learning is that inference learning is more eÆcient than

classi�cation learning for linear category structures in which the category prototypes

successfully segregate members of the contrasting categories, but is less eÆcient than

classi�cation learning for nonlinear category structures in which the prototypes are of

limited use. Table 5 illustrates a linear category structure. Yamauchi and Markman

(1998) trained subjects on this category structure through either inference or classi�cation

learning. Learning was more eÆcient for inference learning than for classi�cation learning.

Conversely, when subjects were trained on the nonlinear category structure shown in

Table 6, classi�cation learning was more eÆcient than inference learning. The complete

pattern of results for these two studies is shown in Table 7. In both studies, subjects
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completed 30 blocks of training or until they surpassed 90% accuracy for a three block

span. The perceptual dimensions were form, size, color, and position.

Insert Table 6 about here

The acquisition patterns for inference and classi�cation learning for the linear and

nonlinear category structure support the notion that inference learning focuses subjects on

the internal structure of each category whereas classi�cation learning focuses subjects on

information that discriminates between the categories. One interesting prediction that

falls out of this characterization of inference and classi�cation learning is that when the

categories have a linear structure, inference learning should promote classi�cation learning

more than classi�cation learning promotes inference learning. Uncovering the prototype of

each category during inference learning provides a basis for subsequent classi�cation

learning (i.e., the key conceptual clusters have already been identi�ed). Corroboration for

this intuition can be found in SUSTAIN's simulations of the Type IV problem (which has

a linear category structure). As we noted earlier, in the rare instances in which SUSTAIN

only recruited one cluster for each category (i.e., the category prototype), learning was

very eÆcient. In the majority of simulations, SUSTAIN learned the Type IV problem by

focusing on discriminating information (i.e., creating imperfect \rules" and memorizing

exceptions).

Insert Table 7 about here

The reverse task ordering (classi�cation learning followed by inference learning)

should not be as eÆcient. If classi�cation learning promotes a focus on discriminative
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rules and memorization of certain exemplars, inference learning should not bene�t greatly

from previous classi�cation learning. The reason is that the representations acquired

through classi�cation learning are not appropriate for inference learning which requires

knowledge of the structure of the individuals categories (as opposed to the information

that discriminates between the categories). Yamauchi and Markman (1998) tested and

con�rmed this prediction | inference learning followed by classi�cation learning is the

more eÆcient task ordering.

One important question is whether SUSTAIN can demonstrate the appropriate

acquisition pattern for inference and classi�cation learning. Other models such as the

Generalized Context Model (Nosofsky, 1986), which is an exemplar model like ALCOVE,

and the rational model, which, like SUSTAIN, forms clusters, have been unable to account

for the Yamauchi and Markman (1998) data on linear category structures, yet alone the

data for both the linear and nonlinear category structures.

Fitting SUSTAIN

The procedure used to train SUSTAIN mimicked the procedure used to train

humans. The mean number of blocks required to reach criterion for each condition was �t

(see Table 7). SUSTAIN's �t is also shown in this table. The best �tting parameters are

shown in Table 1 under the heading inference/classi�cation. Note that an additional

parameter, �label (category focus), was utilized in these simulations. The category focus

parameter governs how much attention is placed on the category label at the beginning of

a learning episode (akin to a subject's initial biases when entering the laboratory). Given

the important organizational role that we hypothesize the category label plays (as well as

the results from Yamauchi & Markman, 2000), we wanted to give SUSTAIN the option of

placing more importance on the category label at the start of training. Following our

intuitions, SUSTAIN di�erentially weighted the category label (see Table 1) relative to the
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perceptual dimensions which have an initial tuning of 1.

Interpretation of the Model Fits

Table 8 displays the modal number of clusters SUSTAIN recruited for each

simulation. When engaged in inference learning with the linear category structure,

SUSTAIN's modal solution was to recruit two clusters (one for each category). These two

clusters were the prototypes of the two categories. Attention was greater (both initially

and in end state) for the category label dimension than for the perceptual dimensions.

When engaged in classi�cation learning with the linear category structure, SUSTAIN

typically recruited six clusters to classify the eight items (i.e., SUSTAIN discovered some

regularity and memorized a number of exceptions). SUSTAIN had a very diÆcult time

when engaged in inference learning with the nonlinear category structure. In this case,

SUSTAIN's focus on the category label dimension was detrimental because the prototypes

of each category are not suÆcient to segregate the category members correctly.

SUSTAIN's focus on the category label actually led it to recruit more clusters than items.

In the case of classi�cation learning, no salient regularity existed and SUSTAIN simply

memorized the six items. SUSTAIN's solution is consistent with an account of human

inference and classi�cation learning that holds that inference promotes a focus on the

internal structure of each category, whereas classi�cation learning orients learners towards

discriminative information.

The way SUSTAIN �ts the inference and classi�cation data also allows it to

correctly predict that classi�cation following inference is more eÆcient than the reverse

ordering (for the linear category structure). When SUSTAIN displays the modal solution

and recruits two clusters for inference learning, these two clusters are usually suÆcient for

successful classi�cation learning. In other words, SUSTAIN can recycle its previous

knowledge structures and simply learn to associate a new response with each cluster.
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Insert Table 8 about here

ALCOVE was also �t to the acquisition data. Somewhat to our surprise, ALCOVE

successfully captured the pattern of data shown in Table 7. ALCOVE's �t the data in

Table 7 by placing a high initial weight on the category label (i.e., the �label had a high

value). ALCOVE basically behaved like a prototype model. In inference learning on the

linear category structure, ALCOVE's focus on the category label became very extreme in

the end state. ALCOVE placed all of its attention on the category label and no attention

on the perceptual dimensions. This allowed ALCOVE to implement a prototype model.

Essentially, each stimulus strongly activates only the members of its category (which can

be thought of as forming a distributed prototype cluster) and none of the items from the

other category. In the nonlinear case, ALCOVE's initial focuses on the category label

dimension was detrimental because behaving like a prototype model is not advantageous

when the prototypes do not suÆciently separate the category members. In this case,

ALCOVE does not shift all of its attention away from the perceptual dimensions. In

classi�cation learning (with both category structures), ALCOVE focused on the

discriminative perceptual dimensions that aid in correctly predicting the category label.

However, the convergence between SUSTAIN and ALCOVE does not carry over to

the transfer learning task predictions. Unlike ALCOVE, SUSTAIN correctly predicted

that inference learning followed by classi�cation learning is more eÆcient than the reverse

task ordering. While SUSTAIN builds up di�erent knowledge structures depending on

which learning mode is engaged, ALCOVE must rely on its weighting of exemplars.

Although exemplar weighting is suÆcient for implementing a prototype model to capture

the inference learning results, it is not suÆcient to capture the transfer results which

appear to be knowledge driven. Our account holds that inference and classi�cation
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learning lead to di�erent category representations. This point of divergence appears

critical to predicting the pattern of transfer.

Explanatory Value, Falsi�ability, and Model Complexity

Further simulations were conducted to determine whether SUSTAIN and

ALCOVE's �t of the data in Table 7 were explanatory rather than merely descriptive. If a

model was suÆciently complex that it could �t any possible pattern of results, it would

not be impressive when the model �t the pattern of results displayed by humans.

In order to test this possibility, we generated a �ctitious data set where classi�cation

learning was more eÆcient than inference learning for the linear category structure, but

less eÆcient for the nonlinear category structure. Notice, that this �ctitious pattern of

results is the opposite of what was observed. We then looked to see whether ALCOVE

and SUSTAIN could �t these data; they could not. The inability of the models to account

for a pattern of results that humans do not generate suggests that, although the models

are highly parameterized, they are potentially falsi�able. Further evidence that SUSTAIN

is explanatory is that SUSTAIN correctly predicted the task ordering result despite only

being �t to the data from the �rst learning task that subjects completed and not the

second.

Modeling Unsupervised Learning

In SUSTAIN there is no principled di�erence between supervised and unsupervised

learning. In either case a cluster is recruited when a surprising event occurs. For

supervised learning, the surprising event is an error (an incorrect prediction at the output

layer). In unsupervised learning, errors cannot be made because there is no discriminative

feedback (and each item is modeled as being a member of the same category). In

unsupervised learning, the surprising event is a new stimulus that is not suÆciently

similar to any stored representation (i.e., cluster).
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Although unsupervised learning has not been as extensively studied as supervised

learning, people can learn without external feedback (Homa & Cultice, 1984). One

important challenge is to characterize how humans build internal representations in the

absence of explicit feedback. In order to evaluate SUSTAIN's promise as a model of

unsupervised learning, SUSTAIN was �t to a series of unsupervised learning studies.

First, two studies from Billman and Knutson (1996) that explore the nature of

unsupervised correlation learning are �t. Then, SUSTAIN is applied to unsupervised

category construction (i.e., sorting) data from Medin, Wattenmaker, and Hampson (1987).

Billman and Knutson's (1996) Experiments 2 and 3

Billman and Knutson's experiments tested the prediction that category learning is

easier when stimulus dimensions are predictive of other dimensions (e.g., \has wings",

\can y", \has feathers" are all intercorrelated). Broadly, their studies evaluate how

relations among stimulus dimensions a�ect unsupervised learning.

Experiment 2 consisted of two conditions: non-intercorrelated and intercorrelated.

In the non-intercorrelated condition, there was only one pairwise correlation between the

perceptual stimulus dimensions, whereas in the intercorrelated condition there were six

pairwise correlations. In the intercorrelated condition, the correlations were also

interrelated (e.g., cor(A,B), cor(B,C), cor(A,C)). Stimulus items depicted imaginary

animals consisting of seven perceptual dimensions: type of head, body, texture, tail, legs,

habitat, and time of day pictured. Each dimension could take on one of three values (e.g.,

\sunrise", \midday", \nighttime"). In both conditions, subjects studied the stimulus

items (they were told that they were participating in an experiment on visual memory) for

four blocks. This segment of the experiment served as the study or learning phase.

In the test phase of the experiment, subjects viewed a novel set of 45 stimulus item

pairs. Each member of the pair had two unknown (i.e., obscured) dimension values (e.g.,
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the locations where the tail and head should have been were blacked out). Subjects

evaluated the remaining �ve perceptual dimensions and chose the stimulus item in the

pair that seemed most similar to the items studied in the learning phase (a forced choice

procedure). One of the test items was considered the \correct" test item because it

preserved one of the correlations present in the items viewed during the study phase.

Table 9 shows the logical structure of the study and test items. There were multiple

assignments (30 in all) of dimensions to the logical structure shown in Table 9 (i.e., the

�rst dimensions could represent the type of tail for one subject, but represent the type of

head for another subject). The basic result from Experiment 2 was that the \correct"

item was chosen more often in the intercorrelated condition than in the

non-intercorrelated condition (73% vs. 62%).

Insert Table 9 about here

This �nding supports the hypothesis that extracting a category's structure is

facilitated by intercorrelated dimensions. An alternative explanation of Experiment 2's

results is that the greater number of pairwise correlations in the intercorrelated condition

(relative to the non-intercorrelated condition) facilitated learning. In order to address this

concern, Experiment 3 equated the number of pairwise correlations in the

non-intercorrelated and intercorrelated conditions. As in Experiment 2, the intercorrelated

condition had interrelated correlations (i.e., relevant dimensions predicted multiple

dimensions) and the non-intercorrelated condition did not. The logical structure of the

study and test phase is shown in Table 10. Experiment 3 used the same procedure as in

Experiment 2. The basic result from Experiment 3 is that the \correct" item was chosen

more often in the intercorrelated condition than in the non-intercorrelated condition (77%

vs. 66%). The combined results from Experiments 2 and 3 support the notion that
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intercorrelated dimensions support unsupervised category learning to a greater extent

than isolated correlations.

Insert Table 10 about here

Fitting SUSTAIN to Billman and Knutson's (1996) Experiments 2 and 3

In the supervised learning studies modeled in this paper, subjects' (and SUSTAIN's)

performance was measured in terms of accuracy or the number of learning blocks required

to meet a criterion. In the Billman and Knutson (1996) studies, a subject's task is to

observe a series of stimulus items without any feedback (the learning phase) and then (in

the test phase) the subject makes a series of decisions which involve choosing the more

familiar stimulus item from a pair of stimulus items (a forced choice). SUSTAIN's task is

to mimic the preferences subjects' display.

Equation 8 is used to model the forced choice decisions. In deciding which of two

test stimuli is most similar to previously studied items, the output of the output unit

representing the category label dimension (again, all items are assumed to be members of

the same category) is calculated for both stimuli and these two values are used to

calculate the response probabilities (i.e., in Equation 8 vz now represents the number of

alternatives in the forced choice and Cout

zk
represents the output of the category unit in

response to the kth item). During the test phase, unknown stimulus dimensions were

modeled by setting the � associated with that dimension to zero for the duration of the

trial (i.e., unknown dimensions did not a�ect cluster activation).

SUSTAIN was trained in a manner analogous to how subjects were trained. No

feedback was provided and all stimulus items were encoded as being members of the same

category. New clusters were recruited according to Equation 11. The best �tting

parameters for both Experiment 2 and 3 (one set of parameters was used to model both
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studies) are shown in Table 1 under the heading unsupervised. SUSTAIN's �t is shown in

Table 11.

Insert Table 11 about here

SUSTAIN correctly predicts the preference ordering in both experiments.

SUSTAIN, like humans, prefers intercorrelated stimulus dimensions and displays greater

accuracy for the intercorrelated than for the non-intercorrelated conditions. In Experiment

2, the stimuli in the intercorrelated condition are naturally partitioned into three groups

de�ned by the correlated dimensions which are ternary valued. Accordingly, SUSTAIN

recruits three clusters and shifts its attention to the correlated stimulus dimensions that

the clusters are organized around. In Experiment 2's non-intercorrelated condition,

SUSTAIN's modal solution again involves three clusters organized around the correlated

dimensions. However, the clusters in the non-intercorrelated condition are not as

encompassing as in the intercorrelated condition. The clusters in the non-intercorrelated

condition are organized around one pairwise correlations, whereas the clusters in the

intercorrelated condition are organized around four intercorrelated dimensions, leading to

higher accuracy levels in the intercorrelated condition. A second popular solution in the

non-intercorrelated condition is to neglect the correlation and instead organize the clusters

around one of the uncorrelated dimensions. When this unidimensional solution occurs all

items that activate a cluster share the same value for the selected dimension (e.g., all the

members of one cluster display the \sunrise" value, members of a second cluster all

display the \midday" value, and members of a third cluster all display the \nighttime"

value). This solution, which does not respect the correlated structure of the stimulus set,

occurred very rarely in the intercorrelated condition. When subjects display this

unidimensional solution (in either the intercorrelated or non-intercorrelated conditions)



Category Learning 51

they perform at chance on the test trials.

The way SUSTAIN �t Experiment 3 parallels Experiment 2 with one interesting

exception. Like Experiment 2, SUSTAIN's most common solution in the

non-intercorrelated condition was to partition the studied items into three groups. Unlike

Experiment 2, the nature of the three partitions varied across runs. SUSTAIN tended to

focus on one of three correlations present in the non-intercorrelated condition and ignored

the other two (a blocking e�ect was displayed). For instance, during training SUSTAIN

might create three clusters organized around the �rst two input dimensions (one cluster

for each correlated value across the two dimensions) and largely ignore the correlation

between the third and fourth dimensions and the �fth and sixth dimensions. The fact that

the correlations are not interrelated makes it impossible for SUSTAIN to capture more

than one correlation within a single cluster. SUSTAIN could recruit more clusters to

represent all of the pairwise correlations, but instead SUSTAIN's bias towards simple

solutions directs it to two of the seven dimensions (i.e., one of the pairwise correlations).

The same dynamics that lead SUSTAIN to focus on only one correlation in the

non-intercorrelated condition lead SUSTAIN to focus on all of the interrelated correlations

in Experiment 3's intercorrelated condition. When SUSTAIN learns one correlation in the

intercorrelated conditions, SUSTAIN necessarily learns all of the pairwise correlations

because of the way clusters are updated. SUSTAIN's solution suggests some novel

predictions: 1) Learning about a correlation is more likely to make learning about another

correlation more diÆcult when the correlations are not interrelated. 2) When correlations

are interrelated, either all of the correlations are learned or none of the correlations are

learned. These predictions have been veri�ed (Gureckis & Love, 2002).
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Other models' performance

SUSTAIN can capture the qualitative patterns in Billman and Knutson's (1996)

data. Many other models cannot. For example, Billman and Knutson (1996) report that

certain exemplar models (e.g., Medin & Sha�er, 1978) and models that repeatedly probe

instance memory (e.g., Hintzman, 1986; Heit, 1992) have problems capturing the

qualitative pattern of results.

For comparison with SUSTAIN, we �t ALCOVE to the data. ALCOVE was unable

to display the correct pattern. ALCOVE made the correct prediction for Experiment 3

(higher accuracy in the intercorrelated condition), but in Experiment 2 ALCOVE

incorrectly predicted that accuracy should be higher in the non-intercorrelated condition.

In both experiments, ALCOVE favored the condition with fewer relevant (i.e., correlated)

dimensions. In Experiment 2, only two stimulus dimensions are involved in correlations in

the non-intercorrelated condition, compared to four in the intercorrelated condition. The

pattern reverses in Experiment 3 with six dimensions participating in correlations in the

non-intercorrelated condition and only three dimensions participating in correlations in

the intercorrelated condition. ALCOVE's attentional mechanism favors the condition with

fewer relevant dimensions. Unlike humans and SUSTAIN, ALCOVE is insensitive to the

nature of the correlations and does not appear to favor intercorrelated dimensions. As a

consequence of clustering, SUSTAIN does favor intercorrelated structure.

Modeling category construction

In category construction (i.e., sorting studies), human subjects are given cards

depicting the stimuli and freely sort the cards into piles that naturally order the stimuli.

In other words, subjects sort the stimuli into the natural substructures of the category

without any supervision. In Billman and Knutson's (1996) studies we saw that subjects

preferred stimulus organizations in which the perceptual dimensions were intercorrelated.
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Interestingly, category construction studies reveal a contrasting pattern | subjects tend

to sort stimuli along a single dimension. This behavior persists even when alternate

organizations respect the intercorrelated nature of the stimuli (Medin et al., 1987).

For example, Medin et al. (1987) found that subjects tended to sort the stimulus set

depicted in Table 12 along one of the four perceptual dimensions (e.g., subjects placed all

the stimuli with angular heads in one pile and all the stimuli with round heads in a second

pile) even though there is a natural grouping of the stimuli that captures the

intercorrelated family resemblance structure of the stimulus set (i.e., the stimuli in the left

column of Table 12 in one pile and the stimuli in the right column in the second pile).

Insert Table 12 about here

Modeling Sorting Behavior with SUSTAIN

SUSTAIN was applied to the sorting data from Medin et al.'s (1987) Experiment 1

in hopes of reconciling the apparent contradictory �ndings from category construction

studies and Billman and Knutson's (1996) studies. In Experiment 1, subjects were

instructed to sort the stimuli into two equally sized piles. Stimuli were cartoon-like animals

that varied on four binary-valued perceptual dimensions (head shape, number of legs,

body markings, and tail length). The logical structure of the items is shown in Table 12.

The basic �nding is that subjects sort along a single dimension as opposed to sorting

stimuli according to their intercorrelated structure (i.e., family resemblance structure).

SUSTAIN was applied to the stimulus set from Experiment 1. SUSTAIN, like

Medin et al.'s subjects, was constrained to only create two piles (i.e., clusters). This was

accomplished by not allowing SUSTAIN to recruit a third cluster.3 SUSTAIN was

presented with the items from Table 12 for 10 training blocks. The multiple blocks are
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intended to mirror human subjects' examination of the stimulus set and their ruminations

as to how to organize the stimuli. The critical question is how will SUSTAIN's two

clusters be organized? Using the same parameters that were used in the Billman and

Knutson (1996) studies (see Table 1 under the heading unsupervised), SUSTAIN correctly

predicted that the majority of sorts will be organized along one stimulus dimension. In

particular, SUSTAIN predicted that 99% of sorts should be unidimensional and 1% of

sorts should respect the intercorrelated structure of the stimulus set.

SUSTAIN's natural bias to focus on a subset of stimulus dimensions (which is

further stressed by the selective attention mechanism) led it to predict the predominance

of unidimensional sorts. Attention is directed towards stimulus dimensions that

consistently match at the cluster level. This leads to certain dimensions becoming more

salient over the course of learning (i.e., their � attention value becomes larger). The

dimension that develops the greatest saliency over the course of learning becomes the basis

for the unidimensional sort. Thus, SUSTAIN predicts that which dimension a subject

sorts the stimuli on is dependent on the order in which the subject encounters the stimuli.

Of course, there are other possible explanations for why humans sort on a particular

dimension (e.g., individual di�erences in a priori dimensional saliency). However, Gureckis

and Love (2002) recently tested SUSTAIN's stimulus ordering prediction in a sequential

sorting study and human subjects do display the ordering result that SUSTAIN predicts.

Interestingly, SUSTAIN was able to account for both the Billman and Knutson

(1996) data and the Medin et al. (1987) data despite the di�erences in the �ndings.

Subjects in Billman and Knutson's (1996) studies infrequently organized the stimulus set

along one dimension (especially in the intercorrelated conditions) because the correlations

between dimensions were perfect. In contrast, each pairwise correlations in Medin et al.

(1987) contained two exceptions (see Table 12). The perfect correlations in Billman and

Knutson's studies led SUSTAIN to focus on a set of dimensions and not a single
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dimension. Still, SUSTAIN occasionally displayed unidimensional sorts, particularly in

Experiment 2's non-intercorrelated condition in which there was only one pairwise

correlation (no interrelated correlations).

The combined �ts of Billman and Knutson's (1996) studies and Medin et al. (1987)

suggest that the saliency of stimulus dimensions changes as a result of unsupervised

learning and that the correlated structure of the world is most likely to be respected when

there are numerous intercorrelated dimensions that are strong. SUSTAIN predicts that

the intercorrelated structure of a stimulus set can be discovered when the intercorrelations

are imperfect (as in Medin et al., 1987) if the correlations are numerous. In cases where

the total number of correlations is modest, and the correlations are weak and not

interrelated, SUSTAIN predicts that stimuli will be organized along a single dimension.

General Discussion

SUSTAIN is motivated by a few simple principles, yet can account for a wide range

of data. SUSTAIN begins small and expands its architecture when the problem dictates

it. SUSTAIN expands in response to surprising events (such as a prediction error in a

supervised learning task or a stimulus that mismatches existing knowledge structures in

an unsupervised learning task). SUSTAIN expands its architecture by adding a cluster

that encodes the surprising event. Future events can then be understood in terms of the

new cluster (as well as the existing clusters). When a surprising event does not occur,

similar items are clustered together. Clusters that are activated by numerous stimuli serve

as abstractions that can be continuously updated. This simple learning procedure allows

SUSTAIN to infer a category's structure. Importantly, the category substructure

SUSTAIN uncovers is dictated not only by the structure of the world (i.e., the actual

structure of the categories), but by the learning task or current goals. SUSTAIN acquires

di�erent knowledge structures depending on the current learning task (e.g., inference,
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classi�cation, unsupervised learning, category construction, etc.). The data �ts presented

here suggest that SUSTAIN discovers category substructure in a manner close to how

human learners do.

For example, SUSTAIN successfully �t the learning curves from Nosofsky et al.'s

(1994) replication of Shepard et al.'s (1961) studies of classi�cation learning by matching

its complexity to that of the learning problem. SUSTAIN's solutions to the six problems

were highly interpretable. Although these data suggest that item learning should always

be more diÆcult than category learning, SUSTAIN was able to �t Medin et al.'s (1983)

data on identi�cation and category learning in which human learners displayed an

identi�cation learning advantage with distinctive stimuli. SUSTAIN modeled this data by

capturing an interaction between learning task and stimulus type in which identi�cation

learning bene�ts more than category learning from distinctive stimuli. Again, SUSTAIN's

solution was interpretable; distinctive stimuli reduce the bene�t of abstraction and

attenuate the e�ects of cluster competition (both of these factors favor identi�cation

learning relative to category learning). The simulations suggest an explanation for why

experts are pro�cient at operating at more speci�c (i.e., lower) category levels { when

stimuli are perceived as more distinct the preferred level of categorization tends to shift

towards a more speci�c level. SUSTAIN o�ers a mechanistic account (that is motivated by

a few simple principles) for why this shift should occur.

Without altering its operation, SUSTAIN also was able to capture data (Yamauchi

et al., 2001; Yamauchi & Markman, 1998) comparing human inference and classi�cation

learning. In particular, SUSTAIN correctly predicted that inference learning is better

suited for linear category structures whereas classi�cation is best matched with nonlinear

category structures. The knowledge structures SUSTAIN acquired (e.g., the prototype of

each category in the case of inference learning with the linear category structure) allowed

it to correctly predict that inference followed by classi�cation is a more eÆcient task
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ordering than the reverse ordering. In the case of the linear category structure, there was

a tangible bene�t of abstraction (which contrasts with the detrimental e�ects of

abstraction in the Medin et al., 1983, study).

Finally, SUSTAIN was able to account for human learning in a series of

unsupervised learning tasks. SUSTAIN's clustering process allowed it to correctly predict

that human learners favor intercorrelated category structures (Billman & Knutson, 1996).

Without altering the parameter values, SUSTAIN was also able to account for studies in

which humans sort intercorrelated stimuli along a single dimension (Medin et al., 1987).

SUSTAIN resolves this apparent contradiction in terms of the nature (intercorrelated vs.

non-intercorrelated), strength, and numerosity of the correlations.

Future Directions

One exciting avenue of future work is applying SUSTAIN to kindred areas of

psychological research such as object recognition research. SUSTAIN may inform theories

and models of object recognition. Tarr and Pinker (1989) argue that object recognition is

viewpoint dependent. According to Tarr and Pinker (1989) we represent an object as a

collection of 2D views, as opposed to representing an object as a structural description

that includes the object's features and the spatial relations among the features (e.g.,

Biederman, 1987). Multiple-view theories and models bear a resemblance to exemplar

categorization models in that abstraction occurs indirectly by storing many

examples/views of a category/object. Poggio and Edelman's (1990) multiple-views model

of object recognition interpolates amongst all views of an object observed when classifying

a novel view. Like exemplar models, Poggio and Edelman's (1990) model is not very

economical and stores every training example. SUSTAIN may o�er a better approach.

SUSTAIN only stores \views" when SUSTAIN makes an incorrect prediction. In this

fashion, SUSTAIN may only need to recruit a few clusters to correctly identify an object
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from a novel view. Views that are very similar or vary on input dimensions that are not

critical to identifying the object would share a common cluster. An object whose

appearance varies greatly with a change in viewpoint (e.g., a car) would require more

clusters (i.e., stored views) than an object whose appearance di�ers little across viewpoints

(e.g., a basketball). Applying SUSTAIN to object recognition data could lead to novel

predictions and would go far in integrating categorization and object recognition research.

Beyond its potential to improve our understanding of the related domains of

categorization and object recognition, the ideas underlying SUSTAIN may successfully

address a fundamental aw in the exemplar and view-based frameworks. In these

approaches, the notion of an exemplar (or view) is typically left unde�ned (c.f., Logan,

1988). To illustrate the problem, consider a learner focusing on a chair while walking

across a room. At every moment the learner is exposed to a slightly di�erent image. The

viewpoint is constantly changing and with it changes a number of the chair's properties

(e.g., the visible features, albedo, etc.). After walking across the room, is one exemplar

stored or are a million? Exemplar models do not address this fundamental question, but

SUSTAIN does. SUSTAIN only recruits a new cluster in response to a surprising event. In

the above example, all the above information would be integrated into a single cluster

unless something unexpected was encountered. SUSTAIN does not merely replace one

problem (de�ning what an exemplar is) with another (de�ning what a cluster is) either.

SUSTAIN speci�es when and how clusters are formed and updated. SUSTAIN's clustering

method may prove useful in understanding how humans individuate in general (c.f.,

Barsalou, Huttenlocher, Lamberts, 1998).

Future improvements in SUSTAIN will likely focus on its cluster recruitment

strategy and its psychological underpinnings. The current recruitment strategy is

somewhat idealized. In order to account for a broader range of learning data, mechanisms

will probably need to be probabilistic and have the ability to remove and combine existing
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clusters. Fortunately, work in the machine learning literature (Aha, Kibler, & Albert,

1991; Bradshaw, 1987) suggests avenues for these future explorations.

Implications

Human category learning is inuenced by the structure inherent in the world, but

human learning is also exible and adaptive. For instance, human learning is a�ected by

how the learner interacts with the stimuli, the learner's goals, and the nature of the

stimuli. Humans can learn under either supervised or unsupervised conditions. Within

these broad learning modes, important di�erences exist. For example, inference and

classi�cation learning are both supervised learning modes but they give rise to very

di�erent acquisition patterns. A key challenge for models of categorization is to show

corresponding exibility without losing the ability to predict patterns of performance.

The most distinctive contribution of SUSTAIN is that addresses the di�erent ways

in which goals and tasks a�ect learning. In doing so, it extends the scope of categorization

models. Although previous models have been able to account for supervised category

learning at a �ne level of detail, they have not demonstrated a corresponding breadth with

respect to multiple learning procedures. SUSTAIN's �t of the data sets represent an

existence proof that a greater range of �ndings can be addressed by models of

categorization. We believe that this is an important step because a move toward a greater

variety of conditions that a�ect learning is also a move toward greater realism and

ecological validity.

In addition to extending the space of tasks and data that can be formally modeled,

SUSTAIN provides an explanation of how these di�erent tasks and data sets are

interrelated. This is critical. As we explore new paradigms in order to gain additional

perspectives on the nature of human categorization, there is a risk that the �ndings will

fracture, leading to di�erent theories and models for di�erent tasks. SUSTAIN brings
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together a number of seemingly disparate tasks in a coherent manner using a single set of

principles.

SUSTAIN's achievements are not at the cost of an overly complex formalism.

SUSTAIN is a fairly idealized and simple model, motivated by a few interrelated

principles. Its operation is straightforward | start simple and add complexity (i.e.,

clusters) as needed. The fact that these principles appear to be successful in accounting

for otherwise counter intuitive data suggests that human categorization also favors

starting simple and adding complexity as needed (see also Ahn and Medin, 1992).
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Appendix A

Although ALCOVE and SUSTAIN di�er in a number of critical ways, their formal

descriptions overlap extensively. The description of ALCOVE in this appendix is

leveraged o� of SUSTAIN's description. We recommend reading the sections \SUSTAIN's

formalization" and \Exemplar models" before reading Appendix A.

Stimulus Representation

Stimuli are represented in a manner identical to how they are represented in

SUSTAIN. Distance in representational space between a stimulus and an exemplar is

calculated the same way as distance between a stimulus and a cluster is calculated in

SUSTAIN. In ALCOVE, an exemplar is recruited for each novel stimulus.

ALCOVE's parameters

Table 13 lists all of ALCOVE's parameters and includes a brief description of the

function of each parameter. Di�erences exist in how SUSTAIN and ALCOVE are

parameterized. ALCOVE contains two learning rates, one for learning how to shift

attention and another for learning association weights between exemplars and category

units (i.e., responses), whereas SUSTAIN contains just one learning rate. SUSTAIN's does

have the attentional focus parameter r which a�ects how quickly attention shifts, so

SUSTAIN also has a mechanism for selectively adjusting the speed of attentional shifts.

Insert Table 13 about here

Unlike SUSTAIN, ALCOVE does not contain a cluster (or exemplar) competition

parameter. ALCOVE does have a speci�city parameter that is somewhat related to

SUSTAIN's cluster competition parameter. The speci�city parameter governs how
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strongly exemplars will be activated that are not identical to the current stimulus. To the

extent that other exemplars can be understood as competing with the dominant exemplar,

this parameter is analogous to SUSTAIN's cluster competition parameter. Of course,

exemplars can also behave cooperatively as in cases in which exemplar models display

prototype e�ects (strong endorsement of the underlying prototype) because of the

cumulative similarity of the prototype stimulus to all stored exemplars (see Medin &

Scha�er, 1978). For data sets in which the saliency of a stimulus dimension was not

controlled, the stimulus representation is parameterized in the same fashion as it was with

SUSTAIN.

Mathematical Formulation of ALCOVE

In ALCOVE, all hidden units (i.e., exemplars) have a nonzero output. In SUSTAIN,

only one hidden unit (i.e., cluster) has a nonzero output. The output of an exemplar is:

Hout

j
= e�c(

Pm

i=1
�i�ij) (15)

where Hact

j
is the activation of the jth exemplar, c is the speci�city parameter, m is the

number of stimulus dimensions, �i is the attention weight for the ith input dimension, and

�ij is the distance between exemplar Hj's position in the ith dimension and the current

stimulus's position in the ith dimension (�ij is de�ned as it is in SUSTAIN).

Activation is spread from exemplars to the output units forming the queried

stimulus dimension z as it is in SUSTAIN:

Cout

zk =
nX

j=1

wj;zkH
out

j (16)

where Cout

zk
is the output of the output unit representing the kth nominal value of the

queried (unknown) zth dimension, n is the number of exemplars, and wj;zk is the weight

from exemplar j to Czk.
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The probability of making response k (the kth nominal value) for the queried

dimension z is calculated in the same manner as SUSTAIN:

Pr(k) =
e(d�C

out
zk

)P
vz

j=1 e
(d�Cout

zj
)

(17)

where d is a response parameter (always nonnegative) and vz is the number of nominal

units (and hence output units) forming the queried dimension z.

After responding, feedback is provided to ALCOVE. The target value for the kth

category unit of the queried dimension z is calculated as it is in SUSTAIN:

tik =

8>><
>>:

max(Cout

zk
; 1) if Iposzk equals 1,

min(Cout

zk
; 0) if Iposzk equals 0.

9>>=
>>; (18)

Unlike SUSTAIN, hidden units (i.e., exemplars) in ALCOVE do not shift their

positions as clusters do in SUSTAIN. Like SUSTAIN, ALCOVE reallocates attention after

receiving feedback:

��i = ��a

mX
j=1

"
vzX
k=1

�
tzk � Cout

zk

�
wj;zk

#
Hout

j
� c � �ij: (19)

where ��i is the change in attention for dimension i, na is the attention learning rate, m

is the number of stimulus dimensions, z is the queried dimension, and vz is the number of

nominal values for dimension z.

ALCOVE's attentional mechanism seeks to minimize overall error and is derived

from the delta learning rule (Rumelhart et al., 1986). Initially, the attention weight for

each dimension are set to 1.

As in SUSTAIN, the one layer delta learning rule (Widrow & Ho�, 1960) is used to

adjust the weights between hidden units (exemplars) and the category units forming the

queried dimension z:

�wj;zk = �w(tzk � Cout

zk )Hout

j : (20)



Category Learning 75

Author Note

This work was supported by AFOSR Grant F49620-01-1-0295 to B.C Love and NIH

Grant MH55079 to D. L. Medin. We would like to thank F. Gregory Ashby, Jerome

Busemeyer, John Kruschke, Levi Larkey, Todd Maddox, Art Markman, Thomas Palmeri,

Paul Reber, Terry Regier, Lance Rips, Je�rey Rouder, Satoru Suzuki, and James Tanaka

for their helpful comments. Correspondence concerning this research should be addressed

to Bradley C. Love, Department of Psychology, The University of Texas at Austin,

Austin, TX 78712. E-mail: love@psy.utexas.edu.



Category Learning 76

Footnotes

1Coincidentally, in some cultures bats are considered to be birds (see Lopez et al.,

1997)

2The term cor(X,Y) denotes that dimensions X and Y have correlated values.

3This modi�cation proved to be unnecessary as an unmodi�ed version of SUSTAIN

recruited two clusters in 99% of simulations.
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Table 1

SUSTAIN's best �tting parameters for all data sets considered.

function/adjusts symbol six types �rst/last name inference/classi�cation unsupervised

learning rate � 0:092 0:096 0:101 0:097

cluster competition � 1:25 4:57 3:49 6:40

decision consistency d 16:9 10:61 7:60 1:98

attentional focus r 9:01 6:87 0:81 10:0

distinct focus �distinct - 3:04 - -

category focus �label - - 4:41 -
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Table 2

The logical structure of the six classi�cation problems tested in Shepard et al. (1961) is

shown. The perceptual dimensions (e.g., large, dark, triangle, etc.) were randomly assigned

to an input dimension for each subject.

Stimulus I II III IV V VI

1 1 1 A A B B B B

1 1 2 A A B B B A

1 2 1 A B B B B A

1 2 2 A B A A A B

2 1 1 B B A B A A

2 1 2 B B B A A B

2 2 1 B A A A A B

2 2 2 B A A A B A



Category Learning 79

Table 3

The logical structure of the First Name and Last Name conditions from Medin et al. (1983).

The four perceptual dimensions were hair color, smile type, hair length, and shirt color.

Stimulus First Name Last Name

1 1 1 2 A A

1 2 1 2 B A

1 2 1 1 C A

1 1 2 1 D A

2 1 1 1 E A

1 1 2 2 F B

2 1 1 2 G B

2 2 2 1 H B

2 2 2 2 I B
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Table 4

Human performance and SUSTAIN's (in parentheses).

Problem Type Blocks Required Proportion Reaching Criterion Overall Accuracy

First Name 7.1 (8.9) 1.00 (1.00) .84 (.82)

Last Name 9.7 (10.8) .91 (.94) .87 (.88)
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Table 5

The logical structure of the two categories tested in Yamauchi and Markman (1998).

Category A Category B

1 1 1 0 A 0 0 0 1 B

1 1 0 1 A 0 0 1 0 B

1 0 1 1 A 0 1 0 0 B

0 1 1 1 A 1 0 0 0 B
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Table 6

The logical structure of the two categories tested in Yamauchi et al. (2002).

Category A Category B

1 1 1 1 A 1 1 0 1 B

1 1 0 0 A 0 1 1 0 B

0 0 1 1 A 1 0 0 0 B
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Table 7

The mean number of inference and classi�cation learning blocks required for humans and

SUSTAIN (shown in parentheses). Subjects (and simulations) not reaching the learning

criterion were scored as a 30 (the maximum number of blocks)

inference classi�cation

linear 11.5 (11.8) 13.4 (12.4)

nonlinear 27.4 (28.5) 10.3 (11.3)
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Table 8

The modal number of clusters recruited by SUSTAIN for the inference and classi�cation

learning problems.

inference classi�cation

linear 2 6

nonlinear 10 6
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Table 9

The logical structure of the studied stimulus items for the non-intercorrelated and

intercorrelated conditions in Experiment 2 of Billman and Knutson (1996). The seven

columns denote the seven stimulus dimensions. Each dimension can display one of three

di�erent values, indicated by a 1, 2, or 3. An x indicates that the dimension was free to

assume any of the three possible values.

non-interrelated condition

1 1 x x x x x 2 2 x x x x x 3 3 x x x x x

intercorrelated condition

1 1 1 1 x x x 2 2 2 2 x x x 3 3 3 3 x x x
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Table 10

The logical structure of the studied stimulus items for the non-intercorrelated and

intercorrelated conditions in Experiment 3 of Billman and Knutson (1996). The seven

columns denote the seven stimulus dimensions. Each dimension can display one of three

di�erent values, indicated by a 1, 2, or 3. An x indicates that the dimension was free to

assume any of the three possible values.

non-intercorrelatedl condition

1 1 1 1 1 1 x 2 2 1 1 1 1 x 3 3 1 1 1 1 x

1 1 1 1 2 2 x 2 2 1 1 2 2 x 3 3 1 1 2 2 x

1 1 1 1 3 3 x 2 2 1 1 3 3 x 3 3 1 1 3 3 x

1 1 2 2 1 1 x 2 2 2 2 1 1 x 3 3 2 2 1 1 x

1 1 2 2 2 2 x 2 2 2 2 2 2 x 3 3 2 2 2 2 x

1 1 2 2 3 3 x 2 2 2 2 3 3 x 3 3 2 2 3 3 x

1 1 3 3 1 1 x 2 2 3 3 1 1 x 3 3 3 3 1 1 x

1 1 3 3 2 2 x 2 2 3 3 2 2 x 3 3 3 3 2 2 x

1 1 3 3 3 3 x 2 2 3 3 3 3 x 3 3 3 3 3 3 x

intercorrelated condition

1 1 1 x x x x 2 2 2 x x x x 3 3 3 x x x x
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Table 11

The mean accuracy for humans and SUSTAIN (shown in parentheses) for Billman and

Knutson's (1996) Experiment 2 and 3.

non-intercorrelated intercorrelated

Experiment 2 .62 (0.67) .73 (0.79)

Experiment 3 .66 (0.60) .77 (0.77)
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Table 12

The logical structure of the perceptual dimensions in Medin et al. (1987).

1 1 1 1 0 0 0 0

1 1 1 0 0 0 0 1

1 1 0 1 0 0 1 0

1 0 1 1 0 1 0 0

0 1 1 1 1 0 0 0
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Table 13

ALCOVE's parameters.

function/adjusts symbol

weight learning rate �w

attention learning rate �a

decision consistency d

speci�city c
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Figure Captions

Figure 1. First, the stimulus is encoded (in this case there are three binary valued

dimensions { two perceptual dimensions and the category label). The representational

space is contorted (shrunk or stretched along each dimension) by the attentional

mechanism. The clusters (in this case there are three) compete to respond to the stimulus.

The cluster closest to the stimulus in representational space wins (through cluster

competition { note the inhibitory connections among the three clusters). The winning

cluster predicts the queried/unknown stimulus dimension value (in this case the category

label) by sending a signal to the output units forming the queried dimension. These output

units in turn serve as inputs to the decision procedure which generates the response.

Figure 2. Two receptive �elds are shown. These receptive �elds are for the same

dimension (i.e., size) and accordingly have the same tuning, but are centered at di�erent

positions along the dimension. The cluster containing the receptive �eld on the right

prefers larger stimuli than the cluster containing the receptive �eld on the left.

Figure 3. Two receptive �elds are shown. A maximal response is elicited from both

receptive �elds when a stimulus falls in the center of each receptive �eld (a 1.0 response

for the broadly tuned receptive �eld; a 2.0 response for the tightly tuned �eld). Compared

to the broadly tuned �eld, the tightly tuned �eld's response is stronger for stimuli falling

close to the center and is weaker for stimuli farther from the center. The crossover point

occurs at a distance from center of .7 (approximately).

Figure 4. Nosofsky et al.'s (1994a) replication of Shepard et al. (1961) is shown on top.

Below, SUSTAIN's �t of Nosofsky et al.'s (1994a) data is shown (averaged over many

simulations).
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