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Abstract

The probability calculus provides an attractive canonical form for reasoning but its use
requires numerous estimates of chance. Some of the estimates needed in artificial systems
can be recorded individually or via Bayesian networks. Others can be tabulated as relative
frequencies from stored data. For the shifting contexts of commonsense reasoning, however,
the latter sources are likely to prove insufficient. To help fill the gap, we show how sensible
conditional probabilities can be derived from absolute probabilities plus information about
the similarity of objects and categories. Experimental evidence from studies of human
reasoning documents the naturalness of the numbers we derive.

1 Introduction

For the probability calculus to serve as the “faithful guardian of common sense” [15], a great

many estimates of chance are needed. Even when the domain can be structured by conditional

independence (as assumed in medical diagnosis [8]), numerous probabilities must often be

recorded. Without such structure, the source of probability estimates becomes a yet more

pressing issue, especially for autonomous agents exposed to novel situations in everyday life.

It has been observed that the needed estimates “can come either from the knowledge engi-

neer’s (or expert’s) subjective experience, or from measurements of frequencies in a database of

past experiences, or from some combination of the two” [17]. Little attention appears to have

been devoted to forging probabilities from other kinds of information that may be available to

a reasoning agent. The latter information includes the pairwise similarity between objects or
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categories, e.g., that a German Shepherd is more similar to a Labrador than to a Chihuahua.

In a competent reasoner, some means of calculating similarity is likely to be present in any

event. For similarity is essential to categorization [20, 18], and to evaluating substitutions in

a search task (e.g., whether to retrieve a Labrador or a Chihuahua when a German Shepherd

cannot be found). It also plays a role in naive inductive inference, at least at the qualitative

level [16, 14].

Similarity is a particularly intriguing raw material for probability computations because it

can often be derived from facts easily discovered by an autonomous agent. Thus, feature-based

models of similarity [21, 12] rely on little more than counting the predicates that apply to

objects. Likewise, geometrical models [19] involve the positions of objects along quantifiable

dimensions like size. (See [11, 6] for further discussion.)

The goal of the present paper is to argue for the feasibility of extracting estimates of

probability from similarity. Rather than treating the problem in full generality, we focus on

a narrow class of conditional probabilities Pr (p | q1 · · · qn), described in the next section. The

derivations depend on no more than the (absolute) probabilities attached to p, q1 · · · qn and

the similarity of objects (or categories) mentioned in the latter statements. Our proposals

conform to qualitative conditions that must be met by sensible estimates of chance. It will

also be shown that the numbers implied by our formulas are close to estimates of conditional

probabilities produced by students asked to think about salary prospects after graduating from

familiar colleges.

We stress that our results are intended merely to illustrate the larger enterprise of culling

useful probabilities from varied information available to the reasoner. Similarity is only one

type of information that ultimately influences human estimates of chance.

We conclude this introductory section with a remark about probabilistic coherence. An agent

may endorse Pr (p∧ q ∧ r) = .5 and Pr (q) = .8 and then use similarity to derive Pr (p | q) = .6.

Together, the three judgments are incoherent in the sense that no joint distribution generates

all three.1 Incoherent probabilities are a questionable basis for reasoning, so a similarity-

based estimate of chance seems to be constrained to take into account the agent’s pre-existing

probabilities. This is a daunting prospect if the latter set is numerous. It might nonetheless

be safe to generate new probabilities in isolation from earlier ones if there is an efficient way to

“rectify” all the estimates in a second step, minimally adjusting them to achieve coherence. In
1They imply that Pr (p∧q) = Pr (q)×(Pr (p∧q))/Pr (q) = Pr (q)×Pr (p | q) = .8×.6 = .48 < .5 = Pr (p∧q∧r).

No distribution assigns lower probability to p ∧ q than to p ∧ q ∧ r.
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fact, recent progress [2, 5] in devising algorithms for rectifying incoherent judgment warrants

exploring the two step strategy for expanding a corpus of probabilistic beliefs by similarity-

derived estimates of chance. We proceed on this basis, thus ignoring most of the probability

corpus already available to the reasoner prior to her exploitation of similarity.

2 Theory

First we specify the class of conditional probabilities to be derived. Then we present and discuss

formulas for carrying out the derivation.

2.1 Cases to be considered

Let Q represent a given predicate like “has trichromatic vision.” Letters a, b, c stand for objects

or categories to which Q can be meaningfully applied, e.g., foxes, wolves, goldfish. We assume

that a, b, c are all at the same conceptual/hierarchical level. Thus, if a is foxes then b cannot be

a particular fox nor the class of canines. The intent of this requirement is to allow similarity to

be naturally assessed among all pairs from a, b, c. The statements figuring in our analysis have

the form Qk or ¬Qk, where k is one of a, b, c. We consider the following types of conditional

probabilities.

(1) (a) Pr (Qc | Qa)
(b) Pr (Qc | ¬Qa)
(c) Pr (¬Qc | Qa)
(d) Pr (¬Qc | ¬Qa)
(e) Pr (Qc | Qa, Qb)
(f) Pr (¬Qc | ¬Qa,¬Qb)
(g) Pr (¬Qc | Qa, Qb)
(h) Pr (Qc | ¬Qa,¬Qb)
(i) Pr (Qc | ¬Qa, Qb) and Pr (Qc | Qa,¬Qb)
(j) Pr (¬Qc | ¬Qa, Qb) and Pr (¬Qc | Qa,¬Qb)

To predict the conditional probabilities in (1), we allow ourselves no more than (i) the

probability of each of the three statements Qa, Qb, Qc, and (ii) the pairwise similarities among

each pair in {a, b, c}. We denote the similarity between objects x, y by sim(x, y), and assume

that it is scaled on the unit interval with 1 representing identity. That is, sim(x, y) ∈ [0, 1]

and sim(x, y) = 1 iff x = y. It is further assumed that sim is a symmetric function, that is,
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sim(x, y) = sim(y, x). The symmetry assumption is consistent with the bulk of human judgment

[1] even though it may be violated in rare circumstances [21]. The symmetry of sim(· , ·) ensures

that similarity is not a disguised judgment of conditional probability inasmuch as Pr (· | ·) is

not symmetric in its arguments.

For any pair of statements p, q, at least one of Pr (p | q) ≥ Pr (p) and Pr (p | ¬q) ≥ Pr (p)

must hold. It simplifies notation to assume:

(2) Confirmation Assumption: Pr (Qc | Qa) ≥ Pr (Qc) and Pr (Qc | Qb) ≥ Pr (Qc).

The stimuli used in our experiments have been designed to satisfy (2). Their construction was

guided by the authors’ intuition rather than theory, however. We return to this theoretical gap

in the discussion section.

2.2 Formulas

The appendix lists the formulas used to construct the conditional probabilities in (1). We

discuss cases (1)(a),(e),(i). The others are straightforward variants.

2.2.1 Pr (Qc | Qa). Any formula for constructing Pr (Qc | Qa) on the basis of Pr (Qa),

Pr (Qc) and sim(a, c) should meet certain qualitative conditions. Trivially, the formula must

ensure that 0 ≤ Pr (Qc | Qa) ≤ 1. More substantively, as sim(a, c) approaches 1, Pr (Qc | Qa)

should approach 1. For if sim(a, c) ≈ 1 then Pr (Qc | Qa) ≈ Pr (Qc | Qc) = 1. (Thus, the con-

ditional probability that pigs have trichromatic vision given that the hogs do is close to unity

given the similarity of these creatures.) On the other hand, as sim(a, c) goes to 0, Pr (Qc | Qa)

should go to Pr (Qc). For sim(a, c) ≈ 0 signals the unrelatedness of a and c, rendering Qa irrele-

vant to the estimation of Qc. Further conditions arise from purely probabilistic considerations.

For example, Pr (Qa) ≈ 1 should imply Pr (Qc | Qa) ≈ Pr (Qc). (Consider the probability that

newborn rats typically weigh at least one ounce assuming that the same is true for newborn

elephants.) Conversely, and other things equal, as Pr (Qa) decreases Pr (Qc | Qa) should in-

crease. The formula must also respect the familiar fact that as Pr (Qc) goes to unity so does

Pr (Qc | Qa), and similarly for zero.

It is easy to verify that Formula (4) of the appendix meets the foregoing conditions. For

example, as sim(a, c) goes to 1, 1−sim(a,c)
1+sim(a,c)

goes to 0, hence α =
(

1−sim(a,c)
1+sim(a,c)

)1−Pr(Qa)
goes to 0,

so Pr (Qc)α goes to 1. Of course, (4) is not unique with these properties, but it is the simplest
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formula that occurred to us, and reaches its limiting behavior monotonically. It will be seen in

the next section that (4) provides a reasonable approximation to Pr (Qc | Qa) in at least one

experimental context.

Note that Formula (4) satisfies the Confirmation Assumption (2) inasmuch as Pr (Qc) cannot

exceed Pr (Qc | Qa).

2.2.2 Pr (Qc | Qa, Qb). We propose ten qualitative conditions that should be satisfied by a

formula for Pr (Qc | Qa, Qb); five involve similarity and are discussed first. As either sim(a, c)

or sim(b, c) approach unity, Pr (Qc | Qa, Qb) should also approach unity. (Thus, the condi-

tional probability that pigs have trichromatic vision given that the hogs and squirrels do is

close to unity given the similarity of pigs and hogs.) Next, if both sim(a, c) and sim(b, c) go

to 0 then Pr (Qc | Qa, Qb) should go to Pr (Qc) (since zero similarity signals irrelevance of the

conditioning events). On the other hand, if just sim(a, c) approaches 0, then Pr (Qc | Qa, Qb)

should approach Pr (Qc | Qb); likewise, if just sim(b, c) approaches 0 then Pr (Qc | Qa, Qb)

should approach Pr (Qc | Qa). (Thus, the probability that wolves are fond of garlic given

that bears and bees are is close to the probability that wolves are fond of garlic given than

bears are.) Next, as sim(a, b) goes to unity, Pr (Qc | Qa, Qb) should go to Pr (Qc | Qa) [equiv-

alently, Pr (Qc | Qa, Qb) should go to Pr (Qc | Qb)]. For sim(a, b) ≈ 1 indicates that Qa, Qb

record virtually identical facts. (Thus, the probability that otters can hear ultrasounds given

that porpoises and dolphins can should be close to the probability that otters can hear ultra-

sounds given that porpoises can.) Our formula also represents the converse tendency when

neither similarities nor absolute probabilities are extreme. In this case, we typically expect

Pr (Qc | Qa, Qb) > Pr (Qc | Qa),Pr (Qc | Qb). (Thus, the probability that geese have a mag-

netic sense given that sparrows and eagles do exceeds the probability that geese have a magnetic

sense given that sparrows do, without reference to eagles.) Naturally, there are counterexamples

to such generalizations; they will be discussed at the end.

Purely probabilistic conditions on the construction of Pr (Qc | Qa, Qb) include the following.

(a) 0 ≤ Pr (Qc | Qa, Qb) ≤ 1.

(b) As Pr (Qa) approaches unity, Pr (Qc | Qa, Qb) approaches Pr (Qc | Qb). Likewise, as

Pr (Qb) approaches unity, Pr (Qc | Qa, Qb) approaches Pr (Qc | Qa).

(c) As Pr (Qa) and Pr (Qb) both go to unity, Pr (Qc | Qa, Qb) goes to Pr (Qc).

(d) Other things equal, as Pr (Qa) and Pr (Qb) both decrease, Pr (Qc | Qa, Qb) increases.
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(e) As Pr (Qc) approaches unity, so does Pr (Qc | Qa, Qb); as Pr (Qc) approaches zero, so does

Pr (Qc | Qa, Qb).

Formula (8) satisfies all the conditions we have posited for Pr (Qc | Qa, Qb). For example, if

sim(a, b) ≈ 1 then β ≈ 1 in (8), hence Pr (Qc | Qa) ≈ max{Pr (Qc | Qa), Pr (Qc | Qb)}. Since

sim(a, b) ≈ 1, the latter expression is close to max{Pr (Qc | Qa), Pr (Qc | Qa)} = Pr (Qc | Qa).

2.2.3 Pr (Qc | ¬Qa, Qb). Note first that (2) implies that Pr (Qc | Qb) ≥ Pr (Qc). It also

follows that Pr (Qc | ¬Qa) ≤ Pr (Qc). In light of these inequalities, four constraints on the

relation between similarity and Pr (Qc | ¬Qa, Qb) may be formulated. First, as sim(a, c) ap-

proaches unity, Pr (Qc | ¬Qa, Qb) approaches zero. Likewise, as sim(b, c) approaches unity, so

does Pr (Qc | ¬Qa, Qb). [Of course, by the transitivity of identity and Leibniz’s law, it can’t

be the case that both sim(a, c) and sim(b, c) approach unity.] Next, as sim(a, c) and sim(b, c)

both go to zero, Pr (Qc | ¬Qa, Qb) goes to Pr (Qc). Finally, if just sim(a, c) goes to zero then

Pr (Qc | ¬Qa, Qb) goes to Pr (Qc | Qb); likewise, if sim(b, c) goes to zero then Pr (Qc | ¬Qa, Qb)

goes to Pr (Qc | ¬Qa).

We also have familiar conditions involving only probability. As Pr (Qa) approaches zero,

Pr (Qc | ¬Qa, Qb) approaches Pr (Qc | Qb); likewise, as Pr (Qb) approaches 1, Pr (Qc | ¬Qa, Qb)

approaches Pr (Qc | ¬Qa). In the same way, as Pr (Qa) approaches zero while Pr (Qb) ap-

proaches unity, Pr (Qc | ¬Qa, Qb) approaches Pr (Qc). And as Pr (Qc) goes to unity (respec-

tively, to zero), so does Pr (Qc | ¬Qa, Qb).

Formula (12) satisfies the foregoing conditions. For example, sim(a, c) ≈ 1 implies that X

is large relative to Y , hence that Pr (Qc | ¬Qa, Qb) is dominated by Pr (Qc | ¬Qa).

Pr (Qc | Qa,¬Qb) is treated in parallel fashion.

3 Experimental test of the theory

Three experiments were performed to assess the psychological plausibility of our formulas. The

vast array of potential predicates and objects renders definitive evaluation a long range project.

As a preliminary test, we chose a domain about which college students were likely to have

opinions and interest, namely, post-graduation salaries from different colleges and universities.
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3.1 Experiment 1

3.1.1 Stimuli and procedure. The following institutions served as objects in the first

experiment (playing the roles of a, b, c in Section 2.1).

Connecticut State University Oklahoma State University Harvard University

Arkansas State University Yale University

The predicate employed was:

over 60% of the graduates from [a given institution] will earn more than $50,000 a

year at their first job.

The resulting 5 statements give rise to 20 conditional probabilities of form (1)(a) [Pr (Qc | Qa)]

and to 60 of form (1)(e) [Pr (Qc | Qa, Qb)].2 Eighteen students at Northwestern University

were recruited to evaluate probabilities and similarities. Each student estimated all 20 con-

ditional probabilities of the first form, and half of the second form (50 judgments in all). In

addition, each student estimated the (absolute) probabilities of the five statements, as well as

the 10 similarities among the five institutions. Similarity was rated on a scale from 0 (perfect

dissimilarity) to 1 (perfect similarity). Observe that 15 judgments of similarity and absolute

probability were used to predict 80 judgments of conditional probability (or 50 judgments if the

order of conditioning events is ignored). The predictions were made on the basis of formulas

(4) and (8) of the appendix.

Data were collected using a computerized questionnaire. Similarity judgments were elicited

first, followed by absolute probabilities, conditional probabilities of form (1)(a) then conditional

probabilities of form (1)(e). Within these categories, stimuli were individually randomized.

3.1.2 Results. Data were averaged prior to analysis. Probabilities of form (1)(e) are thus

the average of estimates by 9 students; all other averages involve 18 students.3 We computed

three linear correlations, namely:

(3) (a) between the conditional probabilities of form (1)(a) versus their predicted values

using Formula (4);
2We distinguish the order of two conditioning events [otherwise, there would be only 30 probabilities of form

Pr (Qc | Qa, Qb) based on 5 statements]. The order in which information is presented is an important variable

in many reasoning contexts [9] although there is little impact in the present study.
3Student-by-student analyses of the data are reported in [3].
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Results for Pr (Qc | Qa)
and Pr (Qc | Qa, Qb).
Correlation = .93 (N = 80).
Slope = 1.13, Intercept = .099.

Figure 1: Correlations in Experiment 1

(b) between the conditional probabilities of form (1)(e) versus their predicted values

using Formula (8); and

(c) between the conditional probabilities of both forms (1)(a) and (1)(e) versus their

predicted values using Formulas (4) and (8).

Correlation (3)(c) is plotted in Figure 1, and reveals good fit between predicted and observed

values. Note that the regression line does not lie precisely along the diagonal. This disparity

seems inevitable given the arbitrary endpoints of the similarity scale, which may not be coter-

minous with the probability interval in the minds of human judges. The correlation for (3)(a)

is .99 (N = 20). For (3)(b) it is .92 (N = 60).

3.2 Experiment 2

3.2.1 Stimuli and procedure. The following four institutions served as objects in the

second experiment.

Harvard University Texas Technical Institute

Harvard Divinity School Texas Bible College

Two predicates were employed:

• graduates [of a given institution] earned an average salary of more than $50,000 a year

in their first job after graduation.

8



Results for Pr (Qc | Qa) and
Pr (Qc | ¬Qa). Correlation =
.95 (N = 24). Slope = .922,
Intercept = .053.

Figure 2: Correlation in Experiment 2

• graduates [of a given institution] earned an average salary of less than $50,000 a year in

their first job after graduation.

We conceived the second predicate as the negation of the first (ignoring the case of equal

salaries). The resulting statements give rise to twelve conditional probabilities of form (1)(a)

[Pr (Qc | Qa)] and twelve of form (1)(b) [Pr (Qc | ¬Qa)]. Forty-one students at Northwestern

University evaluated these 24 conditional probabilities along with the similarities and absolute

probabilities needed to test formulas (4) and (5). Data collection proceeded as in Experiment

1.

3.2.2 Results. Data were averaged over the 41 students. Figure 2 shows the correlation

between the conditional probabilities of forms (1)(a) and (1)(b) versus their predicted values

using Formulas (4) and (5). The correlation for the 12 probabilities of form Pr (Qc | Qa) is .98;

for Pr (Qc | ¬Qa) it is .91.

3.3 Experiment 3

The stimuli of Experiment 2 also served in Experiment 3. The resulting statements give rise

to 96 conditional probabilities of forms (1)(e) [Pr (Qc | Qa, Qb)], (1)(f) [Pr (Qc | ¬Qa,¬Qb)].

and (1)(i) [Pr (Qc | ¬Qa, Qb) and Pr (Qc | Qa,¬Qb)]. Forty-seven students at Northwestern

University each evaluated half of these conditional probabilities, along with the six similarities

and eight absolute probabilities needed to test formulas (8), (9) and (12). Each of the 96
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Results for Pr (Qc | Qa,Qb),
Pr (Qc | ¬Qa,¬Qb),
Pr (Qc | ¬Qa, Qb) and
Pr (Qc | Qa,¬Qb).
Correlation = .91 (N = 96).
Slope = .893, Intercept = .042.

Figure 3: Correlation in Experiment 3

conditional probabilities was thus evaluated by 23 or 24 students. Data were collected in the

same order as for Experiments 1 and 2. Note that in the present experiment 14 judgments of

similarity and absolute probability are used to predict 96 judgments of conditional probability.

Figure 3 shows the correlation between the conditional probabilities of forms (1)(a),(f),(i)

versus their predicted values using Formulas (8), (9), and (12). For Pr (Qc | Qa, Qb) the corre-

lation is .93 (N = 24). For Pr (Qc | ¬Qa,¬Qb) it is .92 (N = 24), whereas for Pr (Qc | ¬Qa, Qb)

and Pr (Qc | Qa,¬Qb) it is .93 (N = 48).

4 Discussion

Our experimental results illustrate the thesis that sensible estimates of chance can be extracted

from nonprobabilistic information that may be available to reasoning agents for other purposes.

In the present case, conditional probabilities are derived from similarity supplemented with ab-

solute probability. The specific proposals embodied in formulas (4) - (13) should be considered

tentative and preliminary.

Of particular importance to developing our theory is the context-dependent nature of sim-

ilarity, often noted in psychology [10, 13]. Thus, the similarity of the Texas Technical Institute

to the Texas Bible College should depend on the content of the statements whose probabilities

are at issue (e.g., involving geography versus curriculum). Similarity is usually calculated on

the basis of shared features or proximity in a feature space (as noted earlier). The context-

dependence of similarity thus requires that some features be counted as more relevant than

10



others, depending on which predicate Q is involved in the probability to be estimated. The

issue of relevance is much discussed in philosophy and A.I. [4, 7]. For present purposes, it may

suffice to measure relevance in terms of path-length in an ontological hierarchy of predicates.

Alternatively, two predicates might be considered mutually relevant to the extent that they co-

vary in their application to objects familiar to the reasoner. Constructing Pr (Qc | Qa) would

thus proceed by first calculating the relevance of predicates to Q, next calculating sim(a, c) on

the basis of weighted features or dimensions, then applying rule (4).

In addition to relevance, there is another type of information that needs to be accessed

prior to applying our formulas. To calculate Pr (Qc | Qa), for example, it is necessary to

know whether Qa confirms or disconfirms Qc. Suppose that a is Dell Computer Corporation,

and c is HP/Compaq. If Q is increases sales next year then Qa will strike many reasoners

as confirmatory of Qc, whereas if Q is increases market share next year then Qa will seem

disconfirmatory of Qc. The similarity of a and c can be expected to have different effects

in the two cases. To simplify the issue, we constructed stimuli that satisfy the confirmation

assumption (2) in Section 2.1, thereby aligning polarity with confirmation; specifically, one

of our experimental statements confirms another just in case both have the same number of

negation signs. For greater generality, the computation of Pr (Qc | Qa) should proceed on the

basis of (4) if Qa confirms Qc, but on the basis of a formula like (5) if Qa disconfirms Qc [and

similarly for the other forms listed in (1)]. Default assumptions governing large sets of objects

and predicates might suffice in many cases. For example, the susceptibility to a given disease

by a given species may be assumed not to disconfirm the susceptibility to that disease by any

other species, unless the case is marked otherwise. Marked cases can be expected to include a

range of special facts that must be recorded separately. Even the similarity of identical twins

can be trumped by information that just one of them is dating a millionaire.

Finally, we note that the theory discussed in the present paper can be extended to a broader

class of probabilities, beyond those listed in (1). For example, the probability of universal

statements is treated in [3]. The theory can also be generalized to conditional probabilities

like Pr (Qc | Ra), involving different predicates in the conditioning and target events. For this

purpose, similarity must be assessed between pairs of predicates.
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Appendix: Formulas for predicting conditional probability

(4) Pr (Qc | Qa) = Pr (Qc)α, where α =
(

1− sim(a, c)
1 + sim(a, c)

)1−Pr(Qa)

.

(5) Pr (Qc | ¬Qa) = 1.0− (1.0− Pr (Qc))α, where α =
(

1− sim(a, c)
1 + sim(a, c)

)Pr(Qa)

.

(6) Pr (¬Qc | Qa) = 1.0− Pr (Qc)α, where α =
(

1− sim(a, c)
1 + sim(a, c)

)1−Pr(Qa)

.

(7) Pr (¬Qc | ¬Qa) = (1.0− Pr (Qc))α, where α =
(

1− sim(a, c)
1 + sim(a, c)

)Pr(Qa)

.

(8) Pr (Qc | Qa, Qb) = βM + (1− β)S, where:

β = max



sim(a, b)

sim(a, c)

sim(b, c)

1.0− sim(a, c)

1.0− sim(b, c)

Pr (Qa)

Pr (Qb)


, M = max{Pr (Qc | Qa), Pr (Qc | Qb)},

S = Pr (Qc | Qa) + Pr (Qc | Qb)− Pr (Qc | Qa)× Pr (Qc | Qb),

and Pr (Qc | Qa) and Pr (Qc | Qb) are defined by Equation (4).

(9) Pr (¬Qc | ¬Qa,¬Qb) = βM + (1− β)S, where:

β = max



sim(a, b)

sim(a, c)

sim(b, c)

1.0− sim(a, c)

1.0− sim(b, c)

1.0− Pr (Qa)

1.0− Pr (Qb)


, M = max{Pr (¬Qc | ¬Qa), Pr (¬Qc | ¬Qb)},
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S = Pr (¬Qc | ¬Qa) + Pr (¬Qc | ¬Qb)− Pr (¬Qc | ¬Qa)× Pr (¬Qc | ¬Qb),

and Pr (¬Qc | ¬Qa) and Pr (¬Qc | ¬Qb) are defined by Equation (7).

(10) Pr (¬Qc | Qa, Qb) = βM + (1− β)S, where:

β = max



sim(a, b)

sim(a, c)

sim(b, c)

1.0− sim(a, c)

1.0− sim(b, c)

Pr (Qa)

Pr (Qb)


, M = max{Pr (¬Qc | Qa), Pr (¬Qc | Qb)},

S = Pr (¬Qc | Qa) + Pr (¬Qc | Qb)− Pr (¬Qc | Qa)× Pr (¬Qc | Qb),

and Pr (¬Qc | Qa) and Pr (¬Qc | Qb) are defined by Equation (6).

(11) Pr (Qc | ¬Qa,¬Qb) = βM + (1− β)S, where:

β = max



sim(a, b)

sim(a, c)

sim(b, c)

1.0− sim(a, c)

1.0− sim(b, c)

1.0− Pr (Qa)

1.0− Pr (Qb)


, M = max{Pr (Qc | ¬Qa), Pr (Qc | ¬Qb)},

S = Pr (Qc | ¬Qa) + Pr (Qc | ¬Qb)− Pr (Qc | ¬Qa)× Pr (Qc | ¬Qb), and

and Pr (Qc | ¬Qa) and Pr (Qc | ¬Qb) are defined by Equation (5).

(12) Pr (Qc | ¬Qa, Qb) =

(
Pr (Qc | ¬Qa)× X

X + Y

)
+

(
Pr (Qc | Qb)× Y

X + Y

)
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where:

X =
(

sim(a, c)
1− sim(a, c)

)
× Pr (Qa)

Y =
(

sim(b, c)
1− sim(b, c)

)
× [1.0− Pr (Qb)], and

Pr (Qc | ¬Qa) and Pr (Qc | Qb) are defined by Equations (5) and (4), respectively.

(13) Pr (¬Qc | ¬Qa, Qb) =

(
Pr (¬Qc | ¬Qa)× X

X + Y

)
+

(
Pr (¬Qc | Qb)× Y

X + Y

)

where:

X =
(

sim(a, c)
1− sim(a, c)

)
× Pr (Qa)

Y =
(

sim(b, c)
1− sim(b, c)

)
× [1.0− Pr (Qb)], and

Pr (¬Qc | ¬Qa) and Pr (¬Qc | Qb) are defined by Equations (7) and (6), respectively.
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