ADVANCES
IN THE PSYCHOLOGY
OF HUMAN INTELLIGENCE

Volume 5

Edited by

Robert J. Sternberg
Yale University

LAWRENCE ERLBAUM ASSOCIATES, PUBLISHERS
Hillsdale, New Jersey Hove and London
The Specific Character of Abstract Thought: Categorization, Problem Solving, and Induction

Douglas L. Medin and Brian H. Ross
University of Illinois at Urbana-Champaign

I. INTRODUCTION

Although the typical layperson’s view of intelligence includes a role for practical knowledge and common sense, he or she would probably consider the epitome of intelligence to be abstract, analytic thought. This ability is manifest in both deduction and induction. The truly analytic mind is as at home in evaluating the conclusion that “Some A’s are C’s” from the premises “Some A’s are B’s and some B’s are C’s” as it is in evaluating “Some dogs are feathered” from the premises “Some dogs are pets, and some pets are feathered.” Similarly, on the basis of one or two concrete examples of a type of problem one might expect a very bright person to abstract out a general solution that could be applied to superficially different problems of the same type, while the rest of us may fail to see the connection.

The layperson’s tendency to equate intelligence with abstract thought is shared by cognitive psychologists. We have repeatedly demonstrated the limitations of people as abstract, deductive reasoners and noted with chagrin the difficulty of producing transfer of training or generalized problem-solving skills. Pure, domain-independent, abstract thought remains as our standard. Thus in both categorization and problem-solving research, people are presented with numerous examples with the idea that abstractions (prototypes or schemata) will be made that will facilitate performance on new examples. The general idea is that mental representations take the form of abstract information bound up with concrete details and that transfer or generalization takes place when the irrelevant detail is discarded.

This appreciation of abstract thought carries over into the theories of categorization and problem solving. The abstract schema or prototype is taken to
be the desirable end-state, and the concern is with how the learning of specific examples facilitates the transition to generalized expertise. Overall, then, there is a clear convergence of cognitive psychologists' and lay people's views of intelligence as abstract thought.

In the present chapter we argue for a different view. Although we do not deny that abstraction occurs, our thesis is that less abstract information, which we will refer to as the specific, also needs to be given its due. The idea that learning consists of discarding specific, superficial information in favor of general, abstract information may represent a dangerous oversimplification. We believe that the specific and the abstract are more tightly linked than the modal theory of classification learning or problem solving would imply. These linkages need to be spelled out in careful detail in order for psychologists to develop adequate theories of inductive learning, we would argue.

We are not the first to suggest that specific information is important in cognition. Lee Brooks and his associates (e.g., Brooks, 1978, 1987; Jacoby & Brooks, 1984; Vokey & Brooks, in press) have shown that nonanalytic reasoning by analogy to specific examples may be as powerful as, or more powerful than, more abstract, analytical reasoning. He would claim, for example, that one might classify some novel animal as a mammal not by reference to some abstract definition of mammalhood but because the unfamiliar animal reminds the observer of some familiar mammal such as a rabbit. A few years ago Brooks went so far as to organize a conference on "The Primacy of the Specific," paralleling Hajek's (1969) paper, "The Primacy of the Abstract."

Our thesis is not that abstraction does not occur, but rather that abstraction is more closely tied to specific examples than is commonly thought. This chapter is organized around three claims:

1. Reasoning is often case-based and often relies on specific examples rather than on more abstract knowledge.
2. Abstraction is not necessarily an autonomous process that operates on or performs computations on examples but is otherwise independent of them. Instead, abstraction often appears to derive naturally from exemplar comparison and use.
3. In general, induction is conservative in the sense that it preserves more information associated with examples than many theories of problem solving and categorization imply.

If these three claims concerning categorization and problem solving can be supported, then they suggest that context-free abstract representations are not the epitome of normal intellectual functioning. At first thought, the idea of having knowledge tied to particular contexts and examples appears to be a limitation. We do not deny that there are situations where transfer of training is limited by context-bound knowledge. On the other hand, specificity has its virtues. In
ow the learning of specific rise. Overall, then, there is
and lay people's views of

Although we do not deny
information, which we will
The idea that learning
ation in favor of general,
simplification. We believe
ed than the modal theory of
ly. These linkages need to
ogists to develop adequate
formation is important in
iks, 1978, 1987; Jacoby &
that nonanalytic reasoning
as, or more powerful than,
, for example, that one
reference to some abstract
animal reminds the ob-
years ago Brooks went
Specific," paralleling
ut rather that abstraction is
ly thought. This chapter is

specific examples rather
process that operates on or
wise independent of them.
ally from exemplar com-
use that it preserves more
theories of problem solv-
problem solving can be
representations are not the
ought, the idea of having
appears to be a limitation.
er of training is limited by
:licity has its virtues. In

particular, we argue that specificity may make access to and application of
relevant knowledge easier, may permit graceful updating of knowledge, may
protect the cognitive system from incorrect or inappropriate inferences, and may
provide just the sort of context sensitivity that much of our knowledge should, in
fact, have.

The rest of this chapter is organized as follows. We first review evidence from
the literature on categorization and problem solving bearing on our claims of
case-based or context-dependent knowledge, nonautonomous abstraction, and
conservative induction. This forms the main body of our paper. We next consider
some research in artificial intelligence and psychology that makes use of related
ideas. Finally, we summarize the issues and implications of this specificity.

CONTEXT-RICH, CASE-BASED REASONING: PRIORITY
OF THE SPECIFIC

Introduction

Imagine a clinical psychologist interviewing a new client who reports becoming
extremely anxious whenever he gets on an elevator. How might the clinician
bring to bear her knowledge that is relevant to treating this phobia? One
possibility is that she has a mental representation of phobia that is a summary of
typical characteristics or symptoms, usual treatments and prognosis. The clinici-
may then evaluate whether the new client displays or describes enough of
these characteristic features to be classified as phobic. A second idea is that the
clinician has a set of defining properties in mind that are shared by all phobics
and not seen in nonphobics. The client will either satisfy or not satisfy this
definition and accordingly be classified as either having or not having a phobia.
Still a third possibility is that this new client might remind the clinician of a
previous client who also suffered from claustrophobia. In this instance the
associated mental representation might include a variety of relevant and irrele-
vant details concerning the course of the earlier treatment. For example, she
might remember that the claustrophobia in the earlier instance turned out to be a
side effect of some medication the client was taking. If this were so, the clinician
might ask the new client about any medications being taken even if, in general, it
were rare for phobias to be attributed to side effects of drugs.

The above three possibilities correspond to distinct theories concerning the
nature of learning associated with experience with examples of categories. One
view, the so-called prototype view, is that a natural part of the cognitive system
performs a sort of "mental averaging" to derive summary representations of what
is typical or characteristic of a category. The second view, known as the classical
view, is more stringent in that it claims that there are defining properties that
determine category membership in an unambiguous manner. That is, this view
claims that categories have defining properties and that people’s mental representations that are used in classifying consist of just these defining properties. Recently the classical view has been roundly criticized by cognitive psychologists as well as by philosophers, on the grounds that many of the categories we use are fuzzy, do not have clear definitions, and admit differences in goodness of examples based on number of typical properties (see Smith & Medin, 1981, for a detailed review). For instance, most people judge robins and sparrows to be better examples than penguins and ostriches of the category bird. Graded categories are consistent with the prototype view. The idea of mental averaging is consistent with differences in goodness of examples because the summary representation consists of characteristic or typical properties in addition to defining properties (if indeed any defining properties exist). The third view, often called the exemplar view, shares with the first view the idea that categories may be fuzzy, but it argues that examples of a category may be stored individually and used in “case-based reasoning.” The extreme of this position is that there is no abstraction, and only information concerning particular examples enters into mental representations of categories.

A fair share of laboratory research on categorization over the last decade or so has been directed at contrasting the mental averaging and exemplar storage theories of categorization. In the area of problem solving, corresponding theories arise, although to our knowledge no one has argued that problem solving consists solely of storing examples. Still, there is the question of the degree to which mental representations associated with problem solving are abstract and removed from particular examples. We now briefly review categorization and problem-solving research bearing on “the priority of the specific.”

Categorization: Prototypes Versus Examples

Natural Categories

Our discussion of mental representations in terms of features or properties presupposes some knowledge of just what those features are. Of course, there is no technology available today that would allow us to peer into people’s minds and read off the details of mental representations. An alternative approach is to ask people to list properties of concepts. This strategy was followed by Rosch and Mervis (1975) in their pioneering studies that seriously undermined the classical view of conceptual structure. They asked people to list features of natural object categories such as bird, fruit, and tool as well as to provide properties of particular examples of these categories. In addition, people were asked to rate the goodness of example or typicality of examples. Rosch and Mervis found that people tended to list properties that were characteristic but not defining (e.g., for birds, have feathers, fly, build nests in trees, sing) and that people found rating typicality or goodness of example a natural and meaningful
task. Most important, however, they found that typicality rating could be accurately predicted from property listings—typical examples had many of the properties that were characteristic of the category, whereas atypical members had only a few of them. These findings are consistent with the idea that category representations consist of a set of characteristic properties and that categorization is based on a comparison of properties of examples with properties in the summary representation. This summary representation is referred to as a prototype and need not correspond to any specific example but rather corresponds more to an ideal or even a stereotype.

The work of Rosch and Mervis, as well as others, most notably Smith, Shoben, and Rips (1974), who proposed a specific model for typicality effects, inspired a considerable body of research on categorization involving natural object concepts. Not only do people rate robins to be better examples of bird than they rate ostriches, but people are also faster in verifying category membership ("true or false, a robin is a bird") of typical rather than of atypical category members (see Medin & Smith, 1984; Mervis & Rosch, 1981; Oden, 1987; for relevant reviews).

Artificial Categories

Although asking people to list properties of concepts provides suggestive evidence concerning fuzzy categories, one would not want to maintain that people can directly and accurately introspect on their mental representations. One way of addressing this issue is to artificially construct new categories, ask people to learn to correctly classify examples of them, and then present test probes designed to reveal something about resulting category representations. The examples presented during initial learning can vary in the number of typical properties they possess; the transfer tests usually involve both old and new examples, including the category prototype.

Initial work with artificial categories provided evidence converging on the idea that experience with examples leads to the abstraction of a prototype representing the central tendency of a category. This converging evidence consists of three principal findings:

Typicality Effects. The first robust result is that the more typical properties an example has, the faster and more accurately it is classified (e.g., Barresi, Robbins & Shain, 1975; Goldman & Homa, 1977; Homa & Vosburgh, 1976; Posner & Keele, 1968). This is true for both the original learning of examples and for transfer tests involving new examples.

Performance on Prototypes. On transfer tests given at the end of learning, people classify prototypic patterns as accurately or even more accurately than they classify the old examples on which they were trained (e.g., Homa &
Chambliss, 1975; Homa & Vosburgh, 1976; Posner & Keele, 1968). In addition, transfer performance on new examples is well predicted by the similarity of a new example to the category prototype.

Differential Retention. When delays on the order of several days are inserted between learning and transfer tests, significantly greater forgetting is observed for the old training stimuli than for the prototype and other new patterns (Goldman & Homa, 1977; Homa & Vosburgh, 1976; Posner & Keele, 1970; Strange, Keeney, Kessel, & Jenkins, 1970). These results are consistent with the ideas that judgments are based on a mixture of specific item- and category-level information and that the specific item information is forgotten more rapidly than is the abstract information. As the retention interval increases, judgments are increasingly likely to be based on the prototype.

These results appear to provide strong evidence for prototype abstraction. In this view, experience with examples of a category activates a mental averaging process that more or less automatically abstracts out the prototype. This process operates on examples and, in a sense, discards them. Some theorists have assumed that on transfer tests an old example may be classified on the basis of direct retrieval of information concerning that example, but new examples are assumed to be classified by reference to the prototype.

Challenges to the Prototype View

The idea that concepts are organized around prototypes has not gone unchallenged. The most radical alternative to the prototype view is that no abstract representation is created and that classification decisions are based solely on analogy to specific stored examples.

Brooks (1978, 1987) has been a strong advocate of the exemplar view of categorization. In defense of this view, he puts forth two general arguments. The first argument is that, outside of formal learning contexts, human learning is more analogical than analytical. That is, learning does not consist of explicit attempts to develop and evaluate rules and hypotheses but rather consists of attempts to apply previously stored knowledge to current contexts.¹ According to Brooks, this analogical learning is best served by storing examples rather than by forming abstractions. The second argument is that nonanalytic learning serves organisms very well. Brooks supports this general argument with many clever examples that reveal advantages of preserving information associated with examples. The general claim is that unless one knows exactly how information will

¹Reber (Reber 1967, 1969; Reber & Lewis, 1977) has argued for nonexplicit or unconscious rule learning, but this claim has been confronted with strong counterarguments (e.g., Dunbar, Carlson & Dewey, 1984; Vokey & Brooks, in press; and see also Reber, Allen, & Regan, 1985; and Dunbar, Carlson, & Dewey, 1985). In any event, we do not discuss this issue further since it is not central to our claim.
of several days are inserted greater forgetting is observed ype and other new patterns 976; Posner & Keele, 1970; results are consistent with the cific item- and category-level s forgotten more rapidly than val increases, judgments are for prototype abstraction. In activates a mental averaging it the prototype. This process them. Some theorists have been classified on the basis of ample, but new examples are type.

prototypes has not gone un- type view is that no abstract cisions are based solely on state of the exemplar view of two general arguments. The contexts, human learning is does not consist of explicit theses but rather consists of rival contexts. According to bring examples rather than by nonanalytic learning serves argument with many clever ormation associated with exactly how information will d for nonexplicit or unconscious rule arguments (e.g., Dulaney, Carlson & Alba, & Regan, 1985; and Dulaney, issue further since it is not central to be used later on, it makes little sense to discard information based on very local information. Indeed, local contexts may be part of the information that it is important to preserve. For instance, an important aspect of one’s knowledge about mushrooms is that although mushrooms purchased in a grocery store are nonpoisonous, mushrooms encountered in a woods may be poisonous.

Exemplar Accounts of Categorization. It may not be obvious, but exemplar-based models of categorization can account for the three main results from research using artificial categories that had been taken as providing support for prototype theories of abstraction. Medin and Schaffer (1978) proposed an exemplar-based model of categorization as an alternative to prototype models. In their context model, category judgments are assumed to be based on the retrieval of stored examples. The model assumes that similarity between a test probe and a stored example determines the likelihood that a stored example will be accessed. This means that the judgments will be influenced most heavily by the most similar stored examples. Let us see how the model accounts for findings that seem to call for prototype abstraction.

First of all, the context model predicts typicality effects because a new example having typical features is more likely to be highly similar to numerous learning examples than a new example having atypical features. Second, the prototype is almost always the pattern having the greatest number of highly similar category members, and it also is unlikely to be similar to members of contrasting categories. Medin and Schaffer (1978) showed that a mathematical model based on their theory could indeed predict better performance on the prototype than on specific training examples. Finally, predictions concerning differential retention depend on the particular assumptions made about forgetting. Medin and Schaffer assumed that retention loss corresponds to a loss of distinctiveness of the values of components of stored examples. Under this assumption, performance on old patterns will suffer more over a retention interval than performance on prototypes or new patterns, because of the decreasing likelihood that an old example as a probe will successfully access its own representation. Hintzman and Ludlam (1980) ran computer simulations of forgetting in an exemplar-based categorization model and showed that the predicted differential retention function for the model corresponds closely with observed retention functions. In brief, exemplar-based models can account for all of the main results that had been claimed to support prototype models.

Exemplar Versus Prototype Models. Although the just described results show that exemplar models can account for results that had been taken to implicate prototype models uniquely, they do not provide direct contrasts of the models. The context model implies that typicality effects are a by-product of similarity to examples, not similarity to a prototype. The model predicts that with distance of an example from the prototype held constant, performance will vary (improve)
with the number of stored exemplars similar to the probe in question. In a series of four experiments, Medin and Schaffer (1978) found clear support for this density prediction, and the context model provided a better quantitative account of transfer test data than did prototype models.

We will consider further findings comparing prototype models with exemplar models in the section on conservative induction. So far we wish only to claim that results that appear to require theorists to posit abstract representations can be handled by models that assume more specific information is the basis of performance. We now extend our argument by turning to research that has looked specifically at reminders. This work comes from the area of problem solving where the conventional wisdom has been that experience with examples leads to content- and context-independent abstract representations.

Reminders in Problem Solving

As in the work on categorization, much of the focus of research in problem solving has been on the use of abstract knowledge. At first, the pioneering work of Newell and Simon (1972) investigated general heuristic search methods that might underlie intelligence. Their view of problem solving was that it consisted largely of search through a problem space, so that any general search methods people had for exploring such a problem space would be useful across all types of problems. The work on expert systems (cf. Barr & Feigenbaum, 1981) and the study of experts and novices in various domains (e.g., Chase & Simon, 1973), however, suggested that much of what underlies improved performance for these experienced individuals is not better general search methods but rather more domain-specific knowledge. Thus, much of the current work on problem solving is concerned with trying to characterize this domain-specific knowledge, how it is used, and how it is acquired. A common view is that experience leads to the establishment of domain-specific schemata that alert the expert to a known pattern and also contain the associated procedures (e.g., Chi, Feltovitch, & Glaser, 1981). Although this perspective represents a considerable departure from domain-independent search methods, it still leads one to focus on the idea that some abstract procedures are being applied to the current problem.

Although the view of problem solving as schema instantiation may be appropriate for experienced individuals solving familiar types of problems, it still leaves open the question as to how less familiar types of problems are solved. Two broad classes of possibilities may be distinguished. First, people may rely on general methods, often called "weak methods" because they only make use of domain-independent knowledge. This approach involves starting from scratch, in that no domain knowledge is employed. Second, people may rely on domain knowledge that is not perfectly relevant to the current problem, but will allow them to at least get a good start on the solution. This latter view comes from the belief that much of what we learn is learned from making use of extant knowl-
to be in question. In a series of experiments, models with exemplar knowledge structures or procedures (e.g., Remelhart & Norman, 1981; such a view also derives from the Piatetian notion of accommodation). A principal type of knowledge that people have about a domain in which they do not have expertise is about examples that they have seen earlier. That is, much experience, especially for formal domains in usual instructional settings, consists of the presentation of examples, both worked-out ones and ones for the student to solve. The claim of this section is that these examples are a major source for solving later problems in the domain.

Reliance on Earlier Examples

This reliance on earlier examples is widespread. When students are given problems to solve for homework, a common strategy is to look through the textbook for worked-out problems that “look like” the current problem. In less formal settings, problems may also often remind us of earlier problems from which we may take some or all of the solution. When we have no well-developed schemata for the current problem and are not reminded of any particular earlier problem, a common strategy, as in the just mentioned textbook searches, is to try to think of earlier examples that might be relevant. Indeed, books on heuristic problem solving explicitly suggest such a method (e.g., Polya, 1945; Wickelgren, 1974).

Much of the work on how earlier examples are used by analogy has focused on understanding how to transfer aspects of the earlier problem that are appropriate and not transfer aspects that are inappropriate or irrelevant (e.g., Anderson & Thompson, in press; Burstein, 1986; Gentner, 1983; Holyoak, 1985; Winston, 1980). We will refer to the problem aspects that affect the solution as structural and those that do not as superficial. A reasonable view of transfer, based on the idea that abstraction is natural, is that people use the structural aspects to determine what knowledge to transfer from the earlier example and that the superficial information is discarded. We shall see, however, that transfer is more complicated than this view implies.

Ross (1984, Experiment 2) provides one demonstration of how people rely on earlier examples. In that study, novices learned six principles of probability theory (e.g., permutations, conditional probability) along with a word problem example to illustrate each principle. Each of these word problems made use of a different superficial story line content, such as golfers at a tournament, weather forecasting predictions, or booths at a coin fair. After learning these principles, the learners were asked to solve new word problems. These word problems varied in their superficial similarity to the problems that illustrated the principles. Two problems had story line contents that were similar to the story lines used to illustrate the same principle. Thus, if permutations had been illustrated by the golf story line, the test problem for permutations would have a story line about golf as well. To the extent that these learners were using the earlier examples,
these superficial similarities should facilitate performance because they made it easier to access the appropriate earlier problem (thus, this condition is the appropriate condition). Two problems had story lines unrelated to any earlier problems. This unrelated condition serves as a baseline from which the other effects may be judged. Finally, two test problems had story line contents used in illustrating word problems, but they had illustrated a different principle than the one being tested. For instance, if a boat race word problem had been used to illustrate conditional probability, a test problem for the probability of either or both of two independent events might be about a boat race. To the extent that subjects were making use of the earlier examples on the basis of superficial similarity, this use would be inappropriate for these problems and would lead to lowered performance relative to the unrelated condition. The results showed clear evidence that these superficial similarities were being used. The proportions of correct answers for the appropriate, unrelated, and inappropriate conditions were .77, .43, and .22, respectively. Thus, the same story line for the same principle led to higher performance than the baseline, whereas the same story line for different principles led to lower performance.

Before examining in detail the effect of earlier examples, it is important to distinguish two principal components of how this effect may occur: access and use. First, some earlier example has to be accessed, noticed, or selected. This selection may occur from memory or from a written record such as a textbook. If no earlier example is accessed, clearly one cannot make use of it. The Ross (1984) experiment just described used superficial similarity to bias access. Second, once some example is selected, it must be applied to the current problem. Before bringing out the implications of these observations, we turn to some more direct evidence.

Access. Before an example can be used by analogy, it must be selected or accessed. How are earlier examples chosen to be used in an analogy? Two main means have been examined. First, a teacher might supply the earlier example to use (e.g., Gentner & Gentner, 1983; Rumelhart & Norman, 1981). Although analogies may be provided during some formal instruction, they are rarely provided during much of the intensive problem-solving periods nor are they provided if no teacher is available (i.e., during self-instructed learning). Second, the learner might be reminded of an earlier example. How might this reminding work?

One possibility for how reminding work is that the learner’s analysis of the structural aspects of a problem reminds him or her of another example with the same or similar structural analysis (e.g., Carbonell, 1983). This view claims that structural aspects of a problem are the only aspects used in reminding. A second possibility is that both superficial and structural aspects affect reminding. Although it might seem useful to have reminding based on purely structural aspects, the evidence is quite convincing that both superficial and structural
mance because they made it (thus, this condition is the ones unrelated to any earlier seline from which the other id story line contents used in a different principle than the 1 problem had been used to the probability of either or part race. To the extent that on the basis of superficial problems and would lead to edition. The results showed were being used. The pro unrelated, and inappropriate is, the same story line for the baseline, whereas the same formance.

examples, it is important to effect may occur: access and J, noticed, or selected. This record such as a textbook. If it make use of it. The Ross 1 similarity to bias access. be applied to the current these observations, we turn to

LOGY, it must be selected or used in an analogy? Two main supply the earlier example to & Norman, 1981). Although instruction, they are rarely solving periods nor are they instructed learning). Second, How might this reminding the learner's analysis of the of another example with the 1983). This view claims that used in reminders. A second aspects affect reminders. is based on purely structural th superficial and structural aspects affect what earlier example is thought of (e.g., Gentner & Landers, 1985; Holyoak & Koh, 1987; Ross, 1984, 1987, 1989). Superficial similarity manipulations can have very large effects on access.

These results indicate that the access of earlier examples is affected by multiple sources of knowledge. The idea that various sources might be combined during retrieval is a common one in memory theories (e.g., Anderson, 1983; McClelland & Rumelhart, 1985; Rallijmakers & Shiffrin, 1981), and a number of researchers have suggested that the usual memory retrieval processes are used in these reminders (e.g., Anderson & Thompson, in press; Holyoak & Koh, 1987; Ross, 1984, in press; Schank, 1982). Further evidence indicates that these reminders are sensitive to factors that usually affect memory retrieval. For instance, the retrieval depends upon the relative similarity of the current problem to the earlier example (Ross, 1987, Experiment 2) and can be shown to exhibit standard interference effects (Ross, 1984, Experiment 3).

We believe this effect of superficial similarity on access of earlier examples is another instance of the reliance on specific information. Although in some cases it is possible that this effect occurs because people cannot distinguish superficial and structural aspects (Holyoak, 1985; Holyoak & Koh, 1987), this explanation does not cover many of the cases. For instance, Hinsley, Hayes, and Simon (1977) showed that proficient algebra word problem solvers make use of superficial characteristics in problem solving. These experts have noted correlations between superficial and structural characteristics that they may use in helping to predict the appropriate schema from the readily available superficial information. The subjects would sometimes be able to make a good guess as to how the problem would be solved simply by hearing the first couple of words (e.g., the riverboat). As Lewis and Anderson (1985) noted, experts may have learned when it is all right to rely on superficial features. Such use of superficial information may be helpful in efficient artificial intelligence programs as well. For instance, Shavlik, DeJong, and Ross (1987) argued that relying on the most abstract characterization of a principle that can be used greatly hampers the speed with which a system may solve a problem. Programs that keep various special cases of this abstract characterization can be more quickly accessed and applied to problems than programs that rely on abstract characterizations alone.

Why does superficial information have such large effects on access? Although we may only speculate, two main reasons can be suggested. First, as just mentioned, these superficial aspects may be predictive of structural aspects and be more readily available. In many domains, entities that are superficially similar tend to share deeper similarities (Medin & Ortony, in press). Even when there is no necessary reason for such correlations, as in the domain of formal problem solving, correlations between surface and structural properties tend to be present nonetheless (e.g., Lewis & Anderson, 1985; Mayer, 1982). Second, it appears that the representation of earlier problems may include much of the superficial information. Viewing these reminders as part of the usual memory retrieval
process, one might expect the inclusion of superficial information in the memory for an earlier example to evoke this example under various circumstances. For novices, who do not have a good understanding of many of the structural aspects of a problem (e.g., Chi et al., 1981; Silver, 1981), there may be little alternative but to make use of superficial aspects. Even for experts, however, who presumably do encode the structural information in earlier examples, reminders may occur if the relative similarity between the current and earlier example is high enough. For instance, if an expert problem solver solved a problem about aliens on the planet Quarck, a test problem about the Planet Quarck may well remind the expert of the earlier example (though, of course, the expert may or may not make use of this reminding). Usually, however, problems are not so distinctive and because experts have experienced so many examples, the current test problem may not bring any particular one to mind (at least with enough clarity for the expert to realize he or she is thinking of an earlier example). From this view, at least part of the drop-off in reminding that is assumed to come with expertise may be due to interference among the many possible reminding (Thorndyke & Hayes-Roth, 1979, presented a related interference view of schema acquisition).

Use. Perhaps superficial similarities have effects on how people access potentially relevant knowledge but not on how they use it. A number of current theories allow for the superficial similarity effects on access but claim little if any effect of superficial similarity on use (e.g., Anderson & Thompson, in press; Holyoak, 1985). These theories assume that once an earlier example is selected for analogical use, the structural aspects of the earlier example are used to constrain the analogy that is made. Thus, what actually gets kept from a potential analogy, according to these theories, is some structural-related measure such as functionality (Anderson & Thompson, in press; Kedar-Cabelli, 1985), relevance (Holyoak, 1985), or systematicity (Gentner, 1983).

The idea that only structural information is involved in the use of analogies is consistent with strong forms of abstraction. Some recent evidence, however, suggests that this view is not an accurate one. Gentner and Toupin (1986) showed that the transparency of the object correspondences across stories (i.e., whether similar characters played similar or different roles across the stories) affected mapping performance. If the structural correspondences matched the superficial correspondences, performance was excellent; if not, performance was poor. Ross (1987, 1989) showed that in solving probability theory problems, object correspondences have large effects on performance, even when the appropriate formula is provided. That is, subjects tended to assign objects in the test problem to the variable roles that similar objects occupied in the study example (Ross, 1987). This use of superficial similarity occurred even when the two problems were superficially very different in other respects (Ross, 1989). Theo-
8. THE SPECIFIC CHARACTER OF ABSTRACT THOUGHT

id information in the memory... various circumstances. For... many of the structural aspects... here may be little alternative... ers, however, who presum-... examples, reminiscences may... and earlier example is high... ed a problem about aliens... et Quack may well remind... r, the expert may or may not... problems are not so distinctive... examples, the current test... at least with enough clarity... earlier example). From this... it is assumed to come with... many possible reminiscences... related interference view of... in how people access poten-... sence it. A number of current... on access but claim little if... ersen & Thompson, in press;... earlier example is selected... earlier example are used to... ily gets kept from a potential... ural-related measure such as... ar-Cabelli, 1985), relevance... ed in the use of analogies is... recent evidence, however... entner and Toupin (1986)... ndences across stories (i.e.,... ent roles across the stories)... rrespondences matched the... lent; if not, performance was... robability theory problems, nance, even when the appro-... to assign objects in the test... cupied in the study example... occurred even when the two... espects (Ross, 1989). Theo-... ries that try to account for how analogies are used without any reference to... superficial similarities are unable to account for such effects.

Again, this effect of superficial similarity is not limited to novices. Hinsley et al. (1977) showed that their proficient algebra problem solvers used very different solution procedures for word problems with typical and atypical contents, even though these problems were structurally identical.

This work on reminiscences in problem solving indicates a strong reliance on specific content-rich examples during learning. We are not claiming that experts... have no problem schemata and rely totally on specific examples. However, the heavy use of earlier examples by novices and the finding that experts still can make use of superficial similarities that have proven useful in the past suggest that any understanding of the acquisition and representation of these schemata is going to need to incorporate this use of and learning from specific examples. In the next section, we begin to examine how abstractions may arise.

NONAUTONOMOUS ABSTRACTION

Introduction

Up to this point, we have tried to convince the reader that people are making use of... knowledge other than high-level abstractions. In this section, we will start by... assuming that some abstracted knowledge (i.e., more abstract than previous... instances) exists and is used in categorization and problem solving. Evidence for... this assumption will be given shortly. If abstractions are used, two questions... require answers. First, how do these abstractions come about? Second, what is... the nature of these abstractions? Although these questions are not strictly inden-... pendent, this section will primarily deal with the first question, whereas the... next section will deal primarily with the second question.

We may distinguish two basic views of how abstractions come about. First, a... common view is that abstractions come about automatically from commonalities... across instances. By this account, one can imagine an autonomous abstraction... engine scouring knowledge, devouring instances, and spewing forth abstrac-... tions. From a perspective that abstract knowledge is the goal of a system, such... a view has much to recommend it, since abstractions are automatically taken care... of by a mechanism whose sole purpose is to abstract. A number of rule induction... systems in artificial intelligence and cognitive science have this view of abstraction... (e.g., Anderson, Kline, & Beasley, 1979; Carbonell, 1983; Michalski, 1983). A common scheme of this type is to claim that maximal common... generalizations (essentially abstractions that include features common to the... instances) are made over all instances. In addition, although not explicit, such a... view appears to underlie both associationist and prototype views of category...
learning. In associationist views, instances are assumed to combine in some way such that features common to members of the category are strengthened (i.e., the association between these features and the category are strengthened) and features distinctive to some members are weakened. The prototype view has not generally been concerned with specifying how prototypes are acquired, but a similar process is assumed to occur. After a number of instances have been experienced, the person is assumed to have a representation of the category that consists of some central tendency for each feature, such as those values that occur most often in the instances.

A second, rather different, view of how abstractions come about will be referred to as nonautonomous abstraction. By this account, abstractions come about selectively, from the use of one instance (or abstraction) being applied to another instance. Although the specific schemes vary, the basic idea is that commonalities are necessary, but not sufficient, to lead to abstractions. It is also necessary that the commonalities be used before an abstraction is made. This view eschews making all possible abstractions for the policy of making only those that are useful at least once. To better understand the implications of this nonautonomous abstraction, it is important to note that one now needs to specify what are the conditions under which one instance might be used in processing another. These conditions are exactly what the first part of the chapter has been concerned with, reliance on the specific. The use of an earlier instance, which we have tried to argue is a basic processing principle, not only is effective for processing a current instance but also has later effects through the abstraction that is made as a by-product of this use. We illustrate this idea with two sets of experimental results from our individual research programs.

One research project, conducted by Ross, Susan Perkins, and Patricia Tepenny (Ross, Perkins, & Tepenny, 1988) has investigated abstractions evolving from exemplar comparisons. The first study showed that if people use similarity between two items to classify the new item, later performance is also affected. Subjects learned arbitrary facts about four people. For example “Shirley likes ice cream and bought nails at the store” and “Julia likes canaries and bought a swimsuit at the store.” After learning these facts, subjects were told that two of the people were from Group 1 (say, Shirley and Julia) and two were from Group 2. They were then given descriptions of new people and asked to say to which group they belonged. One of these new people was a person who “bought wood and a towel.” Half of the subjects also heard that the person liked sherbet, whereas the other half heard that the person liked parakeets. We reasoned that these facts would tend to lead subjects to use similarities with either Shirley or Julia to categorize the new people. (Of course, in either case the new example would go into Group 1. The interesting question is what happens next.) If subjects connected the new example with Shirley (because of the sherbet/ice cream similarity), then they might also notice the relation between nail and wood. If they linked the example with Julia (because of parakeet/canary), then
they might also notice the relation between swimsuit and towel. Finally, a list of items was presented, and subjects ranked how likely a person from each group was to buy the items. The list included an item related to nail and wood (chisel) and an item related to swimsuit and towel (sunglasses).

The logic of this test is perhaps easiest to see in the more abstract description provided in Figure 6.1. The new category member either shared two features with Shirley and one with Julia or shared one feature with Shirley and two with Julia. The critical test contrasts the category relevance of f_2 with f_4. Note that both of these features have appeared twice in the category. Therefore, neither the models that assume that feature frequencies are abstracted nor the pure exemplar storage models have any basis for predicting that either feature will be more important than the other. A more dynamic model of reminding does, however, predict a difference. If being reminded of Shirley leads to abstractions related to f_1 and f_2, and being reminded of Julia leads to abstractions related to f_3 and f_4, then for subjects reminded of Shirley, f_2 should be more important than f_4, and for subjects reminded of Julie, the reverse should hold. This is exactly the result obtained by Ross, et al. (1988), suggesting that our hypothesized exemplar comparison process is a key aspect of abstraction.

One alternative possibility, however, is that the reminding does not lead to an abstraction but simply makes the individual (and her associated properties) more memorable. By this account, if one is reminded of Shirley, then the features associated with Shirley, ice cream and nails (f_1 and f_2), are well remembered. At the final ranking, chisel is chosen over sunglasses because nail is better remembered than swimsuit, not because of any abstraction concerning woodworking. Ross et al. (1988) tested this possibility by having the first test item still lead to a reminding (by sherbet or parakeet), but the wood and towel items were replaced with two other unrelated shopping items. If the reminding is having its effect by

<table>
<thead>
<tr>
<th>Study</th>
<th>Shirley</th>
<th>Julia</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>f3</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>f4</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group 1</th>
<th>Group 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>First test (Categorization)</td>
<td></td>
</tr>
<tr>
<td>f1</td>
<td>f3</td>
</tr>
<tr>
<td>12</td>
<td>OR</td>
</tr>
<tr>
<td>14</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Final test (Ranking)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
</tr>
<tr>
<td>f4</td>
</tr>
<tr>
<td>filler</td>
</tr>
<tr>
<td>filler</td>
</tr>
</tbody>
</table>

FIG. 6.1. Partial design of Ross, Perkins, and Tenpenny Study.
making the earlier individual more memorable, the use of these unrelated shopping items should not change the effect. If, however, the reminding is having its effect by leading to an abstraction from the earlier features and test features, then the use of unrelated shopping items should lead to no effect. No effect was obtained, undermining the idea that the earlier results were due to exemplar strengthening. Instead, the results support the abstraction-from-comparison account.

A second line of work by Medin and Edelson (1988) showed exemplar comparison effects, albeit more indirectly. Medin and Edelson were concerned with the use of base rate or frequency information in simulated medical diagnosis. When people are given ambiguous information that is consistent with either a common or a rare disease, they ought to think it is more likely that the common disease is present. Hence the aphorism in medicine, “When you hear hoofbeats, think of horses, not zebras.” Medin and Edelson taught people to classify common and rare diseases on the basis of symptom information. A symptom was either unique to a disease or appeared with both a common and a rare disease. For example, people might learn that a common disease, burlosis, was associated with the symptoms of headaches and dizziness and that a rare disease, midosis, was associated with headaches and blurred vision (see Fig. 6.2). After people learned to classify examples of these (and other) diseases from symptom information, they were then presented with new patterns of symptoms and asked to give their best judgment (again see Fig. 6.2). One test involved the symptom of headaches alone, and people were expected to predict that the more common disease, burlosis, was more likely to be present. They did. On an equally ambiguous test involving dizziness and blurred vision, however, people showed a strong tendency to predict the rare disease, midosis. Finally, when all three symptoms were present people once again tended to predict that the more common disease was present.

These results are quite puzzling, both from the point of exemplar storage theories and models of abstraction. Exemplar storage models would predict that all three tests would lead to judgments that the more common disease was present. Many models of abstraction imply that people would ignore the symptom headaches because it is not a reliable predictor of the disease and that people would learn that dizziness goes with burlosis whereas blurred vision goes with midosis. These abstraction models would imply no preferences on the three ambiguous tests.

The results do make sense, however, when abstraction is tied more closely to exemplar comparison processes. The main idea is that the more frequent or common disease is usually learned first (because it appears more often) and that symptoms of midosis, the rare disease, may remind the learner of the common disease, burlosis (because they share the symptom, headaches). If people were reminded of the common disease and responded by analogy (that is, indicated that burlosis was present), their classification would be incorrect. Medin and Edelson assumed that when people are reminded of an earlier example, respond
the use of these unrelated however, the reminding is the earlier features and test should lead to no effect. No earlier results were due to support the abstraction-from-

Edward (1988) showed exemplar and Edelson were concerned on in simulated medical di-
ation that is consistent with sink it is more likely that the medicine. “When you hear Edelson taught people to of symptom information. A id with both a common and a common disease, burrosis, and dizziness and that a rare and blurred vision (see Fig. ese (and other) diseases from new patterns of symptoms ; 6.2). One test involved the ected to predict that the more e present. They did. On an red vision, however, people e, midosis. Finally, when all ided to predict that the more e point of exemplar storage ge models would predict that more common disease was ple would ignore the symp- of the disease and that people e blurred vision goes with no preferences on the three

action is tied more closely to s that the more frequent or appears more often) and that the learner of the common headaches). If people were y analogy (that is, indicated l be incorrect. Medin and an earlier example, respond

<table>
<thead>
<tr>
<th>Choice?</th>
<th>Correct diagnosis is coralgia</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Symptoms: earaches, dizziness</td>
</tr>
<tr>
<td></td>
<td>1. burrosis</td>
</tr>
<tr>
<td></td>
<td>2. namitis</td>
</tr>
<tr>
<td></td>
<td>3. terrigitis</td>
</tr>
<tr>
<td></td>
<td>4. coralgia</td>
</tr>
<tr>
<td></td>
<td>5. althrex</td>
</tr>
<tr>
<td></td>
<td>6. buragamo</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Choice?</th>
<th>Correct diagnosis is terrigitis</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Symptoms: skin rash, sore muscles</td>
</tr>
<tr>
<td></td>
<td>1. terrigitis</td>
</tr>
<tr>
<td></td>
<td>2. burrosis</td>
</tr>
<tr>
<td></td>
<td>3. althrex</td>
</tr>
<tr>
<td></td>
<td>4. namitis</td>
</tr>
<tr>
<td></td>
<td>5. buragamo</td>
</tr>
<tr>
<td></td>
<td>6. coralgia</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Choice?</th>
<th>Correct diagnosis is terrigitis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Symptoms: back pain, earaches</td>
</tr>
<tr>
<td></td>
<td>1. coralgia</td>
</tr>
<tr>
<td></td>
<td>2. althrex</td>
</tr>
<tr>
<td></td>
<td>3. buragamo</td>
</tr>
<tr>
<td></td>
<td>4. terrigitis</td>
</tr>
<tr>
<td></td>
<td>5. namitis</td>
</tr>
<tr>
<td></td>
<td>6. burros</td>
</tr>
</tbody>
</table>

by analogy, and are incorrect, they then pay special attention to what is novel or different about the current example. That is, they would attend to blurred vision more than headaches. If people followed this strategy, they would, in effect, learn that burrosis is characterized by headaches and dizziness and that midosis is characterized by blurred vision. On the test consisting of blurred vision plus dizziness, people would predict midosis is more likely because the symptom blurred vision had received more attention and because the symptom of headaches associated most closely with burrosis was missing. When the symptom headaches is added, preferences switch to the more common disease, as expected. In short, the idea of reminding and exemplar comparison can account for all three main results. Although Medin and Edelson do not offer the sort of direct evidence for exemplar comparison that was adduced by Ross, et al. (1988), neither pure abstraction models nor simple exemplar storage models can account for these results.

The theme of both of these research projects, then, is that the use of instances during categorization has effects not only on the categorization of the current instance, but on one’s representation of the category. In particular, these exemplar-based categorizations influence the abstractions that are made by the learner. We believe that this evolution of abstractions as a by-product of ex-
emplar comparison and use underlies much of our knowledge. In the next section we present more detail and evidence concerning the form of these abstractions.

IV. CONSERVATIVE INDUCTION

A. Introduction

So far we have argued in favor of two principal claims. The first is that categorization and problem solving rely more on specific examples than many accounts of learning have implied. The second claim is that abstraction is not the product of some autonomous process but rather that abstraction arises as a by-product of the use of examples. If people frequently use the specific in reasoning, and abstraction comes from use, then the form of these abstract representations may be constrained by use in an interesting manner. In particular, induction should be conservative. By conservative we mean that, in general, abstractions will, on the one hand, preserve more than the minimal information necessary to perform a task and, on the other hand, not add information that is not supported by data. To give a simple-minded example, suppose that people were required to correctly classify examples of the categories elephant and zebra. Single dimensions like size and color might be used to achieve perfect classification, and it is conceivable that the resulting mental representations would be as impoverished as “elephants are big” or “zebras are striped.” Certainly the fact that elephants have four legs would have little diagnostic value because zebras also have four legs. If mental representations are the minimum necessary to perform a task, then one would not expect them to include information about number of legs. If, on the other hand, the mental representations were just representations of examples, then information about legs would be retained. Our claim is that when abstraction takes place the resulting mental representation is more like that of examples than like the minimum needed to perform a task (that is, in the case of elephants versus zebras, information about number of legs might well be part of the abstract representation). The other aspect of conservative induction is that inductions need to be tied to data. Technically, a striped zebra supports both the hypothesis “zebras are striped” and the hypothesis “zebras are striped or bright orange.” Conservative induction would disallow the latter hypothesis unless some specific bright orange zebra had been observed.

Some Evidence

Prototype Versus Exemplar Models of Categorization

Earlier we mentioned that exemplar models of categorization could account for the main findings that had been taken as support for prototype models and that there was at least a bit of evidence favoring exemplar models. Actually there have been numerous contrasts of prototype versus exemplar models, and these
knowledge. In the next section we examine the form of these abstractions.

tions have tended to favor exemplar models uniformly. Recall that a prototype representation only preserves information about mean or modal values and all other information is ignored. This is not conservative induction! We believe that the lack of conservative induction in prototype models is the main reason exemplar models fare better than prototype models.

Comparisons of exemplar and prototype models have generally taken the following form:

1. Prototype models assume that some form of potential category-relevant information is not preserved, whereas the contrasting exemplar model implies that the information is not discarded.

2. A test is made that finds that people are, in fact, sensitive to this information, contrary to the prediction of prototype models.

For example, representing a category in terms of central tendency implies that information concerning category size and the frequency with which individual examples appeared is thrown away. Categorization is, however, influenced by both category size and exemplar frequency (e.g., Estes, 1986b; Nosofsky, in press). In addition, people are influenced by correlated properties within categories. For example, large birds are less likely to sing than small birds, and as a consequence, a large nonsinging bird may be more typical than a large, singing bird of the category bird. Again, prototype models imply insensitivity to such correlations contrary to data obtained with both artificial categories (Medin, Altom, Edelson, & Freko, 1982) and natural categories (Malt & Smith, 1983; Medin & Shoben, 1988).²

Our reading of the contrasts between exemplar versus prototype models is that exemplar models fare better because they are more conservative with respect to induction. The claim that abstraction is carried out over individual, independently processed components appears to be too strong. These results do not unequivocally support exemplar models per se.³ Rather they suggest that cate-

²Yet another problem for prototype models is that they imply sensitivity to certain category properties that do not seem to matter to people. For example, it makes no difference whether or not categories can be separated perfectly on the basis of a weighted, additive function of typical properties (Medin & Schwanenflugel, 1981; Watts, Murphy, Dewey, & Medin, 1986). This is required in order for a prototype process to work successfully. This sensitivity is a consequence of the fact that other category-relevant information is not available, according to prototype theory.

³We should note that exemplar storage does not necessarily imply conservative induction, at least if induction is defined over combinations of representation and processing assumptions, not over representations alone. Preserving information by storing examples does not provide conservative induction if the processes that operate on the exemplar representations can only extract a tiny subset of the potential information. One exemplar-based model of classification, known as an average distance model, assumes that classifications are based on computing the average similarity (or its converse, distance) to the examples of each category and classifying the new instance to the category with the greatest average similarity. For many categorization tasks the average distance model makes predictions identical to those of a prototype model (see Estes, 1986a, for a formal proof).
gory representations are more like and preserve more information associated with specific examples than prototype models imply (Medin, 1986). To be successful, models of abstraction would need to be sensitive to these additional types of information.

The above observations are consistent with reminding-based abstraction, because reminding-based abstraction will be conservative. If categorization and problem solving often involve comparing examples within a category, then attention will be directed at properties that the examples share. For comparisons arising from an example reminding the learner of an earlier example, one would expect that only the most similar instances would be selected. For example, in learning the category elephant it might be that bull elephants would tend to remind the learner primarily of other bull elephants. Thus, if there were two distinct types of elephant (bulls and cows), one might expect this to be reflected in the abstract representations that are formed (for example, the representation of elephant might consist of distinct bull elephant and cow elephant representations). Such representations would be consistent with the evidence of sensitivity to within-category property correlations that we mentioned earlier. In brief, within-category property correlations that we mentioned earlier. In brief, within-category comparisons should tend to promote conservative induction.

Cue Versus Category Validity

One can also make the case that conservative induction is very adaptive. The idea that mental representations ought to be the minimum necessary to produce successful classifications treats categorization as an end in itself. One of the main functions of categorization is to allow one to make predictions and inferences about the future. In this view, categorization provides access to critical information, namely, the set of properties that may be inferred from access to a representation. If the representation of elephants is that “they are big,” then little useful information will be accessed. Alternatively, one's accessing the information that bull elephants may suddenly charge at jeeps could be vitally important. More formally, we are suggesting that category validity (the probability of some feature given a category) may be at least as important as cue validity (the probability of a category given some feature). Category validity may influence performance even in tasks that, nominally, involve only cue validity.

There is suggestive evidence that category validity influences categorization. Wolf, Gruppen, and Billi (1985) studied the performance of medical personnel in a simple symptom-testing task. The medical personnel were presented with cards labeled with two diseases (A and B) and given information about the prevalence of one of the symptoms in one of the disease categories. Participants were allowed to select one of the other three sources of information (prevalence of that same symptom in the other disease, prevalence of the alternative symptom in that or the other disease). To determine cue validity or diagnostic value, one would
6. THE SPECIFIC CHARACTER OF ABSTRACT THOUGHT

more information associated with (Medin, 1986). To be successful, itive to these additional types of
ith reminding-based abstraction, conservative. If categorization and
amples within a category, then
amples share. For comparisons
of an earlier example, one would
ould be selected. For example, in
at bull elephants would tend to
phants. Thus, if there were two
es might expect this to be reflected
for example, the representation of
ant and cow elephant representa-
nt with the evidence of sensitivity
we mentioned earlier. In brief,
entioned earlier. In brief, within-
conervative induction.

e induction is very adaptive. The
minimum necessary to produce
is an end in itself. One of the main
ake predictions and infer-
vides access to critical informa-
 be inferred from access to a
ts is that “they are big,” then little
rly, one’s accessing the informa-
teepasts could be vitally important.
y validity (the probability of some
is important as cue validity (the
. Category validity may influence
olve only cue validity.
validity influences categorization.
formance of medical personnel in
ersonnel were presented with cards
formation about the prevalence
ase categories. Participants were
of information (prevalence of that
of the alternative symptom in that
ty or diagnostic value, one would
need to test for the prevalence of the given symptom in the alternative disease category. Only a minority of the personnel (24%) consistently selected this optimal information, and the large majority of nonoptimal choices were testing for the alternative symptom in the initial disease category. In general, if physicians organize their medical knowledge in terms of diseases and the likelihood that different symptoms are associated with them, then category validity may play an important role in induction and diagnostic reasoning. In fact, there is evidence in clinical medicine (Eddy, 1982) that physicians often act as if category validity (probability of a symptom given a disease) were the same as cue validity (probability of a disease given a symptom).

Category Validity and Redundant Rules

A simple illustration of the influence of category validity is associated with the trains shown in Fig. 6.3. The task is to come up with a rule that can be used to determine whether a train is eastbound or westbound. The reader may wish to look at the trains in Fig. 6.3 and come up with such a rule.

There are many possible rules that would successfully classify the trains. The

FIG. 6.3. Set of trains from the Medin et al. (1987) rule induction studies. The Participant's task is to come up with a rule that could be used to classify trains as Eastbound versus Westbound.
question is, Which rules are people most likely to develop? If cue validity were paramount, then one might focus on properties that are unique to one category and combine them into an overall rule. For example, one might notice that only westbound trains have circular loads or short cars, and develop the rule, "Westbound trains have short cars or a circular load."

On the other hand, if category validity is important, then one might expect rules to be composed of properties that are true of all of the members of the category. For example, one might notice that all eastbound cars have a triangular load and all have a long car, and develop the rule, "Eastbound trains have long cars and a triangular load."

These alternative possibilities were evaluated in a series of rule induction experiments by Medin, Wattenmaker, and Michalski (1987). For the trains shown in Fig. 6.3, almost all of the rules developed by participants were conjunctions of properties with perfect category validity.

Even more surprising is the observation that the rules given were not necessarily the most simple possible. For example, a considerable number of people gave the rule, "Eastbound trains have a circular load, a long car, and dark engine windows." Of course, the rule would be equally accurate without the information concerning engine windows. These rules with redundant components provide strong support for conservative induction in that the task seems to represent ideal circumstances (few examples, no memory load) for discovering and using the most simple (minimal) rules. Yet the most simple rules were not always given. In addition, the fact that category validity effects can be obtained in contexts where only cue validity is needed is also completely consistent with conservative induction.

Context Specificity

The standard account of abstraction treats concepts as relatively static and context-independent. The concept *bird*, for example, is thought to be instantiated with the prototype of the best example of bird, independent of the prevailing context. Roth and Shoben (1983), however, demonstrated that typicality judgments vary substantially with context. For example, tea is a more typical beverage than milk in the context of librarians taking a break, but this ordering reverses in the context of truck drivers taking a break. When people read the sentence "The birds waded into the pond," they think of ducks, not robins. If one goal of categorization is to make predictions, it makes a great deal of sense for representations to be context-specific (see Barsalou & Medin, 1986, for more extensive arguments). Again, we have conservative induction.

Interproperty Relations

Independent feature theories, such as prototype abstraction models, do not embody conservative induction in that they assume that abstractions are per-
develop? If cue validity were not unique to one category, one might notice that only, and develop the rule, "West-
important, then one might expect of all the members of the setbound cars have a triangular ...
"Eastbound trains have long in a series of rule induction halvishki (1987). For the trains veloped by participants were validity.
rules given were not necessar-
dible number of people gave a long car, and dark engine accurate without the information redundant components provide a task seems to represent ideal for discovering and using the rules were not always given. In be obtained in contexts where consistent with conservative
cepts as relatively static and le, is thought to be instantiated independent of the prevailing constrasts that typicality judg-
example, tea is a more typical sing a break, but this ordering break. When people read the ink of ducks, not robins. If one takes a great deal of sense for lou & Medin, 1986, for more iive induction.
em abstraction models, do not same that abstractions are per-
formed over individual dimensions independent of other dimensions. One might expect, however, that interproperty relationships are important if representations are knowledge-rich and context-dependent. For example, wings, hollow bones, and feathers are related (by the concept of flying) in a way that red, large, and triangles are not. Medin, Wattenmaker, and Hampson (1987) reported evidence from a task where people are given examples and asked to construct categories that interproperty relationships rather than independent features serve to organize categories. They observed sorting by the principle of "family resemblance" only when knowledge was provided that linked the properties together conceptually. These observations are consistent with induction being more conservative than independent-feature models imply.

Content-Specific Problem Schemata

The common view of problem schemata is that they contain abstract knowledge about how to identify a problem of that type and abstract knowledge about how to solve such identified problems. Although little work has addressed the exact nature of these schemata, it appears that under some circumstances they may contain a great deal of specific and formally unnecessary information. The Hinsley et al. (1977) work, which has been often mentioned in this chapter, provides the best illustration. As a reminder, they found that if word problems used contents that were often used for a particular problem type, the identification of the problem type and the solution of the problem were different from when the content was atypical for the problem type. From this research it appears that if irrelevant aspects are often used in a similar way for a particular problem type, a problem schema will be constructed that takes advantage of these correlations for identification and solution. Such an idea follows clearly from the view presented here but is problematic for most views of problem schemata.

RELATED WORK

We have been arguing that specific or exemplar-based information plays a significant role in intellectual functioning and have tried to make the case for this perspective by reviewing psychological research on categorization and problem solving. One can also trace a trend toward a greater recognition of the "priority of the specific," nonautonomous abstraction, and conservative induction in related areas of research. We provide a brief description of a few of these projects so that the reader may see alternative instantiations of this general approach.

Artificial Intelligence

As we mentioned earlier, most of the initial work in AI was concerned with abstract, domain-independent reasoning heuristics. This early work was fol-
owed by a trend toward using domain-specific schemata, frames, or scripts in reasoning. These organized packets of information contained background knowledge that would be important for an intelligent system to know but, at the same time, were quite rigid. For example, one might have a single script for what goes on in a restaurant. But then how does one decide when a variation is a "normal" variation versus one that requires subscripts? A script that would need to cover both a posh French restaurant and a fast-food hamburger haunt would be quite strained. One response to the lack of flexibility of scripts has been to build systems that can exploit single precedents that may be tailored to fit current situations more closely. We now briefly review a few systems that employ case-based reasoning.

Dynamic Memory and Case-Based Reasoning

Schank (1982) presented a model of memory in which much of the processing of new events is affected by reminders of earlier events (see also Kolodner 1983a, 1983b, 1984). When one is reminded of an earlier event, a generalization of the commonalities of the two events is made, and the events are stored under this generalization with their separate distinctive features. Thus, generalizations of two instances occur, but only through reminders. (Generalizations may also be made if an already formed generalization is used to process a new event, in the same manner as reminders lead to generalizations.) This model leads to generalizations that have proven useful in previous cases, and these generalizations will tend to be more low-level or conservative than those associated with scripts.

In associated work, Kolodner (1983a, 1983b, 1984) has addressed the issue of how memory organization is used in problem solving, focusing on case-based reasoning. Even if a person has the well-organized knowledge, there will be times when abstract knowledge will be insufficient. As in Schank's model, in Kolodner's approach abstract knowledge is built up from comparing episodes and noting their commonalities. The episodes are then stored beneath this abstract knowledge, with indices as to their distinctive features. If a person is trying to solve a problem with which they have a great deal of practice, they are likely to have relevant abstract knowledge that can be used to solve the problem. However, if this problem does not fit the abstract schema very well, the system looks for particular earlier experiences that may fit better.

Kolodner's work on case-based reasoning examined instances in which the person uses a previous experience to suggest means of solving the new problem. She pointed out that the earlier experience may be used in a variety of ways. First, it may help in understanding the focus and intricacies of the new problem. Second, it may help in generating a plan for solving the new problem. Third, if the current problem solving results in a failure, the earlier experience may help in explaining or remediating the failure.

These ideas may be illustrated using one of the domains Kolodner has used,
ic schemata, frames, or scripts in
motion contained background knowl-
edge system to know but, at the same
time when a variation is a "normal"
A script that would need to cover
I hamburger haunts would be quite
ility of scripts has been to build
hat may be tailored to fit current
view a few systems that employ
psychiatric diagnoses (e.g., Kolodner & Kolodner, 1982). If a psychiatrist is
trying to diagnose a patient, it is not uncommon to be reminded of another
patient. This reminding may alert the psychiatrist to examine in more detail some
aspects of the patient's complaints or medical history. It may also suggest a
treatment plan that worked well with the patient of whom the psychiatrist is
reminded. Finally, should a treatment plan not work, that failure may remind
the psychiatrist of another patient for whom the same treatment failed and suggest
possible routes for alternative treatment.

Kolodner's system shares with Schank's the properties of nonautonomous
abstraction and conservative induction. Tendencies to overgeneralize or miss
nuances at the schema-level are counteracted by the saving of precedents that are
exceptions that can enter into lower-level, more precise generalizations.

Abstractionless Induction

A very different use of earlier examples was proposed by Stanfill and Waltz
(1986). These researchers work on the Connection Machine, a computer that
makes use of a parallel architecture with a large number of simple processing
units operating simultaneously. They hypothesized that reasoning from memory
of specific instances is the foundation of an intelligent system, and they, there-
fore, explicitly eschewed the abstraction view of intelligence. Their research
attempts to demonstrate how an abstractionless system can make excellent
decisions.

The method they used can be simply explained. For any application, they
require a fairly rich data base, but the data base does not have to be edited to
include only useful information. Again using an example that they have used in
their research, the data base may consist of patient records, with each having
personal history, symptoms, disease diagnosed, and treatment. When the system
is given information about a new patient (e.g., personal history and symptoms),
it uses this data base to arrive at a diagnosis in the following way. First, it gets
counts of various feature set frequencies, such as the number of times that a
symptom and disease occur together. Second, it produces some metric, such as
the conditional probability of a disease given a particular symptom. Third, it
computes some similarity measure between the current case and each of the
cases, using the metric from step two. Finally, it retrieves those cases that
best match the current case and combines their information to arrive at a
diagnosis (e.g., it could retrieve the best matching case and just use that
diagnosis).

This approach differs radically from many other approaches in artificial
intelligence. Unlike the case-based reasoning approach, no strong domain model
is required. In addition, unlike the rule induction work, the reasoning relies
solely on the data base and does not make use of rules derived from comparing
instances. Similar to the exemplar approach to categorization, the hypothesis is
that the exemplars are likely to contain the important structural information implicitly.

This perspective has a number of advantages over abstraction-oriented views, two of which are particularly relevant here. First, because no rules are formed, the system has a much easier time correcting inappropriate inferences. That is, while rule induction systems need to deal with ways of avoiding inappropriate rules that were formed earlier (e.g., see Anderson et al., 1979; Michalski, 1983), this model does not. As more cases are added to the data base, any inappropriate inferences that occurred because of coincidental correlations of features will be overcome. Second, this view leads in a simple way to a context-sensitivity about what is important. Rule-based views need to incorporate all qualifications into their conditions to avoid making inappropriate inferences as a function of context. The Stanfill and Waltz model, because it always refers to the specific exemplars, naturally incorporates context-sensitivity. For instance, what to do about high blood pressure depends upon, among other things, whether the patient is pregnant or not.

The Stanfill and Waltz model probably does not have much validity as a psychological model because it requires very considerable computation and because it assumes perfect access to relevant knowledge. Nonetheless, at a more abstract level of analysis, their model illustrates all three of our major themes. Indeed, it represents the most radical form of them. Of course, one does not have to subscribe to the strong claim that no abstraction occurs to recognize the costs of nonconservative induction.

Reasoning and Judgment

Given that one of the most important items on the agenda of intelligent organisms is predicting what will happen next, it is not surprising that models of reasoning and judgment have been geared toward describing how our prior experiences are summarized to generate expectations about the future. The past is a norm for the future. A standard view of judgment is that prior experience with examples leads to norms or standards that are used to generate expectations and evaluate current experiences. Recently this view has been challenged. Kahneman and Miller (1986) took the distinct position that norms are not prestored but rather are frequently created on the spot. The idea is that a current experience retrieves or "recruits" related earlier experiences that form an ad hoc norm. As applied to categorization, norm theory implies that categories are really not stored at all. Rather, the category is determined post hoc at the time it is needed and is heavily influenced by the current example.

In more detail, Kahneman and Miller (1986) assumed that when category norms are needed (e.g., to categorize an item or determine how typical it is), the current instance is used to retrieve some similar examples, these examples are combined to generate some norm, and the current instance is then compared to
ent structual information.

abstraction-oriented views, because no rules are formed, appropriate inferences. That is, by avoiding inappropriate data base, any inappropriate relations of features will be to a context-sensitivity about porate all qualifications into inferences as a function of always refers to the specificity. For instance, what to do or things, whether the patient not have much validity as a considerable computation and edge. Nonetheless, at a more i three of our major themes. Of course, one does not have occurs to recognize the costs

of intelligent organisms)

ing that models of reasoning ow our prior experiences are re. The past is a norm for the experience with examples leads citations and evaluate current ged. Kahneman and Miller not prestored but rather are current experience retrieves or ad hoc norm. As applied to are really not stored at all. me it is needed and is heavily assumed that when category armine how typical it is), the samples, these examples are instance is then compared to

these generated norms (see also, Baralou, 1983; Baralou & Medin, 1986, for related ideas). For example, suppose that John almost always drives home from work on a particular route but decides one day to take a more scenic route. Unfortunately, on that day he becomes involved in a car accident. According to Kahneman and Miller (1986), John ought to retrieve episodes involving typical trips home, and since taking the scenic route represents a departure from a norm, tend to attribute at least some of the blame to his taking the alternative route even though there may be no basis at all for doing so (that is, one route may not be any more dangerous than the other).

Norm theory differs from both the common prototype view and the complete exemplar view espoused by Stanfill and Waltz. First, unlike the prototype view, no abstract knowledge of the category is used to form the norms that are used. Second, unlike the Stanfill and Waltz proposal, not all earlier exemplars are used. In fact, norm theory relies upon the fact that the exemplars that are used are ones retrieved by their similarity to the current instance to account for a variety of effects. This norm theory also differs from some other exemplar models (e.g., Medin & Schaffer, 1978) at least in focus, by highlighting the idea that exemplars are combined to form an ad hoc norm. Of course, norm theories share with exemplar theories the general idea of case-based reasoning.

Learning

The same trends we have been discussing are evident in the area of learning, broadly construed.

ACT

Anderson, working within his ACT framework, has been investigating learning for the last decade, using a variety of specific models of abstraction for procedural knowledge. Anderson represents procedural knowledge in terms of If-Then rules called productions. These productions are initially formed from particular experiences, so abstraction requires mechanisms for generalizing the conditions (i.e., aspects in the If part) and the actions (i.e., aspects in the Then part). In his early work, he proposed that there exist automatic generalization and discrimination mechanisms that operate on these productions (e.g., Anderson et al., 1979).

In addition to these inductive learning mechanisms, Anderson proposed knowledge compilation processes that operate on the traces of the applications of productions to create new productions. These knowledge compilation processes (proceduralization and composition) essentially act to collapse operations that have hitherto been conducted separately (see Anderson, 1983, 1986). Thus, proceduralization collapses information retrieval and production matching so that frequently used information can be retrieved and applied in a single step.
Composition collapses productions that often occur in a sequence into a single production. Anderson's recent work (1986) makes the claim that these knowledge compilation processes are sufficient to produce the inductive learning for which he had previously used separate generalization and discrimination processes. For the present purposes, the important point for how this is accomplished is that these knowledge compilation processes are applied to the traces of an analogy from one instance to another. That is, he proposes that the inductive learning occurs as a result not of separate automatic mechanisms, but from the conscious application of knowledge compilation to an analogy. Again, learning is closely tied to how earlier examples are used.

General constraints

Inductive learning in its general form is impossible, because there are simply too many possibilities to be considered (e.g., Gold, 1967; Valiant, 1984). Necessarily, then, people are not completely generalized information processors but rather come prepared to learn some things and not others. Thus, an important part of a general learning theory would be identifying any domain-independent constraints that people use. Berwick (1986) has suggested that one particular type of conservative induction, the Subset Principle, may be one of these domain-independent constraints. Although we shall not describe the Subset Principle in detail, essentially it leads to making the smallest possible generalization. Berwick pointed out that conservative inductions protect the learner from inappropriate (over)generalizations that may be difficult to recover from. The general claim is that it is very risky to discard information, especially in the early stages of learning. We take the observations favoring exemplar models of categorization not as ironclad proof that people do not risk abstractions but rather as suggestive evidence that abstractions are conservative and rich rather than parsimonious and poor.

Parallel Distributed Processing Models

There has been much recent interest in parallel distributed processing, or PDP, models (e.g., Rumelhart, McClelland, & PDP Group 1986). Because these models differ greatly from the symbolic models discussed so far, it is interesting to consider how they fit in this distinction. In these models, knowledge is represented as a pattern of activation over a large number of individual units, with the same units participating in the representation of a great deal of knowledge. Learning occurs by adjustments in the weight of the connections between the individual units. Although these models are very different from the ones discussed so far, they share the property that the generalizations are not formed by explicitly comparing all possible instances but rather occur as a by-product of

4Berwick (1986) or the work by Angluin (1978) cited there should be consulted for details.
the memory storage. As new information is encoded into the units, the adjustment of weights will tend to lead to abstractions over the stored knowledge. An important property of PDP models is that they are highly context- and content-sensitive. For example, if there are distinct subtypes within a category, then multiple prototypes corresponding to these subtypes will evolve (Knapp & Anderson, 1984).

Rumelhart, Smolensky, McClelland, and Hinton (1986) applied these ideas to the notion of schemata. Contrary to the earlier espoused view (e.g., Rumelhart, 1975) that schemata are knowledge structures for interpreting events and storing knowledge, these investigators suggest that schemata correspond to stable patterns of activated units. This view allows a high degree of context- and content-sensitivity, as the inputs constrain the effects of each other and the interpretation of the overall configuration. They provide an illustration of how starting with the idea of a room (via the concept “ceiling”) and a particular object in a room (e.g., an oven) will activate units corresponding to schema-related (kitchen) objects, with the extent of activation a function of the schema-relatedness. Thus, refrigerator and sink might be strongly activated, but even within these objects the particular features (e.g., type of sink) would be affected by the oven unit activation. Thus, PDP models allow detailed specificity from their abstractions.

The above examples are consistent with our general thesis. The traditional view of abstraction, which we have been arguing against, does not have the flexibility that apparently is needed to capture intellectual functioning.

SUMMARY

Our paper has been organized around three major claims:

1. Reasoning is often based on specific examples rather than abstract principles.
2. Induction is not necessarily autonomous but derives from how examples are used.
3. Induction is conservative.

Although these claims go against the typical view of intelligence as abstract thought, in a sense we are taking a middle-of-the-road position in light of the surprising evidence on the effectiveness of case-based reasoning without any abstraction.

Throughout this chapter, we have provided arguments for the advantages of this specificity in case-based reasoning, nonautonomous abstraction, and conservative induction. These three influences can be traced through the major components of problem solving and categorization. First, one accesses relevant
knowledge. Second, one applies that knowledge to the current situation. Third, the knowledge may be affected, either through some major revision or through some minor updating. Specificity is important in each of these aspects.

First, relevant knowledge must be accessed. This component may be further subdivided into which cues provide access to knowledge and the form that this knowledge takes. Implicit in most abstraction views is that it is best to strip away all but the relevant information and to store information of the greatest generality, so that it will have the widest applicability. We have argued that both of these assumptions are probably incorrect. These assumptions might work well if people could always easily analyze any instance or problem to obtain this abstraction and if the irrelevant aspects were independent of the relevant aspects, but neither of these conditions are commonly met. The abstraction view omits formally irrelevant but empirically correlated cues that both novices and experts use (e.g., Ross, 1984, 1987; Hinsley et al., 1977; Medin & Ortony, in press). We see this natural incorporation of such cues as an important advantage for specificity views. These same cues allow this access to have the very important characteristic of context specificity. For any given category or schema, the knowledge that is accessed does not have to always be the same, but can change with various changes in the situation. Finally, access in case-based reasoning allows the learner to take advantage of knowledge from the start, before any abstraction might be formed, using the same processes that will be used when additional relevant knowledge is acquired.

After knowledge is accessed, it must be applied. Again, a common abstraction view is that if the knowledge has been stored at a high level of generality, then it can be instantiated for a large number of different situations. Even granting this assumption, this view still does not take into account any costs of instantiation of high-level variables. We would argue that such costs can be great for three reasons. First, the variables will often be highly interdependent, as well as context-sensitive. The schema must contain information about all these interdependencies and be able to access and apply it appropriately. Second, if certain irrelevant aspects are correlated with the relevant aspects, this view would needlessly force the person to instantiate the variables from scratch each time. If more specific abstractions could also be stored, all of these interdependencies would not have to be constantly kept track of but could be divided such that only ones in the current situation would be used. Finally, it is frequently the case that the same knowledge can be used in a variety of different ways. Premature abstraction would tend to freeze knowledge into a less flexible form.

A third important aspect of performance is updating of knowledge in light of current experiences. Many abstraction models would claim that instances encountered early in learning are automatically used to form an abstraction. Once this abstraction is formed, as long as no major problems are encountered, the later instances only have minor effects in updating this abstraction. Our alternative proposal is that abstractions are not formed automatically but only when
to the current situation. Third, one major revision or through each of these aspects.

his component may be further knowledge and the form that this is that it is best to strip away nation of the greatest general-

We have argued that both of assumptions might work well if a or problem to obtain this end of the relevant aspects, t. The abstraction view omits that both novices and experts

is an important advantage for ness to have the very important ven category or schema, the es be the same, but can change xcess in case-based reasoning ge from the start, before any esses that will be used when

d. Again, a common abstraction at a high level of generality, of different situations. Even take into account any costs of use that such costs can be great highly interdependent, as well information about all these in- it appropriately. Second, if relevant aspects, this view e variables from scratch each be stored, all of these in- keep track of but could be would be used. Finally, it is used in a variety of different knowledge into a less flexible sting of knowledge in light of would claim that instances en- to form an abstraction. Once problems are encountered, the this abstraction. Our alternat- automatically but only when aspects of one instance have proven useful to accomplishing some goal with a later instance. Thus, only generalizations that have proven useful will be formed. In addition, the current view does not necessarily discard the instances once the generalization is formed. This maintenance of instances is particularly important if the information abstracted originally would exclude important information, a phenomenon that one might expect is not uncommon during learning. For example, further experience may lead the learner to realize that additional distinctions are required, triggering a reevaluation of earlier instances. The maintenance of later instances is also important in updating, because if subtle changes occur in a concept or schema over time, these instances allow the learner to be sensitive to that change. Finally, any inappropriate inferences that are discovered can be corrected by the use of the stored instances, a safeguard that is not available to views that discard these instances.

All told, we find these advantages to be strong motivation for the specificity view in categorization, problem solving, and in general, induction. Such a view allows flexibility and a sensitivity in intellectual functioning, properties that are often lacking in models of abstraction.

Perhaps the most surprising result of our survey is the ability of exemplar-based models to parallel the predictions of models based on more abstract representations. This mimicry may hold some clues to the puzzle of why cognitive psychologists find it so natural to equate intelligence with abstract thought. Models of abstraction are a good first-order approximation to what people do. We have seen, however, that the many models of abstraction discard too much information and are rigid and brittle compared with the context-sensitivity and flexibility of human cognition. In that sense, models of abstraction may fail to get at the true character of human intelligence.

ACKNOWLEDGMENTS

This chapter was supported by National Science Foundation grant 84-19576 and National Library of Medicine grant LM 04375 to Douglas Medin, and by National Science Foundation grant IST 83-06670 to Brian Ross. Marie Banich, Gordon Logan, and Larry Barsalou provided helpful comments on earlier drafts of this paper.

REFERENCES

6. THE SPECIFIC CHARACTER OF ABSTRACT THOUGHT

