
Carey’s book is an outstanding contribution to cognitive develop-
ment (Carey 2009). It reviews and updates findings that infants
and young children have abstract or “core” representations of
objects, agents, number, and causes. The number chapters
feature the argument for discontinuity between infant and later
cognitive development. They include evidence that infants use
two separate number abstraction systems: an object-file, parallel
system for the small numbers of 1 to 3 or 4; and a ratio-dependent
quantity mechanism for larger numbers. This contrasts with
adults, who use a ratio-dependent mechanism for all values
(Cordes et al. 2001).

Further, Carey argues that verbal counting is first memorized
without understanding and that the meaning of counting and car-
dinality is embedded in the learning of the quantifier system. She
cites Wynn’s (1990; 1992) “Give X” and LeCorre and Carey’s
(2007) tasks that children aged 2 years, 8 months to 3 years, 2
months typically fail as well as analyses on quantifiers, including
some and many.

An alternative account runs as follows. Infants possess a core
domain for arithmetic reasoning about discrete and continuous
quantity, necessarily including both mechanisms for establishing
reference and mechanisms for arithmetic reasoning. The nonver-
bal domain outlines those verbal data and uses rules that are rel-
evant to its growth. The development of adult numerical
competence is a continuous and sustained learning involving
the mapping of the cultural system for talking about quantity
into the inherited nonverbal system for reasoning about quantity.
Counting principles constitute one way to establish reference for
discrete quantity because they are consistent with and subservi-
ent to the operations of addition and ordering, that is, they are
consistent with basic elements of arithmetic reasoning. In this
view, the Carey account focuses too much on reference and
almost ignores the requirement that symbols also enter into arith-
metic reasoning. The well-established ability of infants and tod-
dlers to recognize the ordering of sequentially presented
numerosities, including small ones, requires a counting-like
mechanism to establish reference. If the symbols that refer to
numerosities do not enter into at least some of the operations
that define arithmetic (order, addition, subtraction), then they
are not numerical symbols. However, there is evidence that
beginning speakers recognize that counting yields estimates of
cardinality about which they reason arithmetically.

1. Infants can represent numerosity in the small number
range. Cordes and Brannon (2009) show that, if anything, numer-
osity is more salient than various continuous properties in the 1–
4 number range. Converging evidence is found in VanMarle and
Wynn (in press).

2. Cordes and Brannon (2009) also show that 7-month-old
infants discriminate between 4:1 changes when the values cross
from small (2) to larger (8) sets. These authors conclude that
infants can use both number and object files in the small N
range, a challenge to the view that there is a discontinuity
between the small number and larger number range for infants.

3. Two-and-a-half-year-olds distinguish between the meaning
of “a” and “one” when tested with the “What’s on the card
WOC?” task (Gelman 1993). When they reply to the WOC
question with one item, they often say “a __”. When told
“that’s a one-x card”, the vast majority of 21

2-year-olds both
counted and provided the cardinal value on set sizes 2 and 3
and young 3-year-olds (�3 years, 2 months) provide both the
relevant cardinal and counting solution for small sets as well as
some larger ones. Syrett et al. (in press) report comparable or
better success rates for children in the same age ranges. The
appearance of counting when cardinality is in question is good
evidence that these very young children, who can be inconsistent
counters, nonetheless understand that counting renders a cardi-
nal value.

4. Arithmetic abilities appear alongside early counting. Two-
and-a-half-year-old children transferred an ordering relation
between 1 versus 2 to 3 versus 4 (Bullock & Gelman 1977).

When these children encountered the unexpected change in
numerosities, they started to use count words in a systematic
way. This too reveals an understanding of the function of count-
ing well before they can do the give-N task. Carey’s claim that
“originally the counting routine and the numeral list have no
numerical meaning” (p. 311) is simply false.

5. Gelman’s magic show was run in a number of different
conditions and with 3-year-old children. Children this age
distinguished between operations that change cardinal values
(numerosities) and those that do not, across a number of
studies. Moreover, when the cardinality of the winner comes
into question, they very often try to count the sets, which are
in the range of 2–4, and occasionally 5.

6. Further evidence that 3-year-olds understanding of cardinal-
ity comes from the Zur and Gelman (2006) arithmetic–counting
task. Children started a round of successive trials with a given
number of objects, perhaps doughnuts, to put in their bakery
shop. They then sold and acquired 1–3 doughnuts. Their task
was to first predict – without looking – how many they would
have, and then to check. Their predictions were in the right direc-
tion, if not precise. They counted to check their prediction and
get ready for the next round. They never mixed the prediction–
estimation phase and the checking phase. Counts were extremely
accurate and there was no tendency to make the count equal the
prediction. Totals could go as high as 5.

7. The idea that understanding of the exact meaning of cardi-
nal terms is rooted in the semantics of quantifiers is challenged in
Hurewitz et al. (2006). They found that children in the relevant
age range were better able to respond to exact number requests
(2 vs. 4) than to “some” and “all.”

8. An expanded examination of the Childes database with
experiments with the partitive frame (e.g., zav of Y) and modifi-
cation by the adverb very (e.g., very zav) reveal that the Bloom
and Wynn analysis of semantics is neither necessary nor sufficient
to accomplish the learnability challenge (Syrett et al., in press).

The preverbal arithmetic structure can direct attention to
and assimilate structurally relevant verbal data and their
environments.

Language and analogy in conceptual change
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Abstract: Carey proposes that the acquisition of the natural numbers
relies on the interaction between language and analogical processes:
specifically, on an analogical mapping from ordinal linguistic structure
to ordinal conceptual structure. We suggest that this analogy in fact
requires several steps. Further, we propose that additional analogical
processes enter into the acquisition of number.

How humans come to possess such striking cognitive abilities and
rich conceptual repertoires is perhaps the question of cognitive
science. Susan Carey has explored this question in part by iden-
tifying specific areas – such as number – in which humans
demonstrate unique and impressive ability, and exploring their
development in great depth (Carey 2009). In her treatment of
number, Carey argues that children gain an understanding of
the natural numbers through a process of mapping the ordinal
structure of the number list to quantity. We agree with this pro-
posal, but we suggest (1) that analogy interacts with language in
several additional and distinct ways to support the acquisition of
number; and (2) that arriving at the analogy from ordered
numerals to ordered quantities probably requires more than a
single leap (Gentner 2010).
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Carey and others have provided substantial evidence
suggesting that two core capacities enter into numerical cogni-
tion: the analog magnitude system, which allows approximate
judgments of quantity; and a system for keeping track of small
numbers of items (up to three or four). Neither is sufficient for
representing large exact numbers—nor indeed for representing
the natural number sequence at all. As Carey reviews, two lines
of evidence suggest that language is key in this achievement:
(1) cross-linguistic studies of Amazonian peoples whose
languages – Pirahã and Mundurukú – lack a full counting
system, and who show marked deficiencies in dealing with
exact numerosities greater than 3 (Everett 2005; Frank et al.
2008; Gordon 2004; Pica et al. 2004); and (2) developmental evi-
dence that children at first learn the linguistic count sequence as
a kind of social routine (Fuson 1988), and that learning this
sequence is instrumental in their acquisition of the conceptual
structure of the natural numbers.

We believe language is instrumental in achieving conceptual
mastery of all sorts; indeed, we have proposed that language,
combined with powerful analogical processes, is crucial to
humans’ remarkable abilities (Gentner & Christie 2008). Analo-
gical processes conspire with language in several ways in concep-
tual development, including the acquisition of number. First,
common labels invite comparison and subsequent abstraction
(Gentner & Medina 1998). Hearing the count label “3” applied
to three pears and three apples prompts comparison across the
sets and abstraction of their common set size (Mix et al. 2005).
Second, the repeated use of the same numerals for the same
quantities helps stabilize numerical representation. English
speakers consistently assign “3” to the same quantity, whether
counting up from 1 or down from 10. This uniform usage
might be taken for granted, except that Pirahã speakers, astound-
ingly, assign their numeral terms to different quantities when
naming increasing vs. decreasing set sizes. A third way in which
analogy interacts with language to support cognitive develop-
ment is that linguistic structure invites corresponding conceptual
structure (Gentner 2003). For example, learning and using the
spatial ordinal series “top, middle, bottom” invites preschoolers
to represent space in an ordered vertical pattern (Loewenstein
& Gentner 2005).

This brings us to Carey’s (2004; 2009) bold proposal that learn-
ing the natural numbers relies on an analogical mapping from
ordinal linguistic structure to ordinal conceptual structure. One
symptom of this analogical insight is a sudden change in the
pace of learning. As Carey reviews, children first learn the
count sequence as a social routine. Despite their fluency with
this linguistic sequence, children may show only minimal
insight into the binding to numerical quantity. A typical 2-
year-old can count from “1” to “10,” but cannot produce a set
of five items on request. The binding of small numerals to quan-
tities is slow, piecemeal, and context-specific (Mix et al. 2005;
Wynn 1990). But once a child binds “3” or “4” to the appropriate
quantity, the pattern changes; the child rapidly binds the suc-
ceeding numbers to their cardinalities. Further, the child
shows understanding of the successor principle, that every
natural number has a successor whose cardinality is greater
by one.

How does the analogy between numeral order and quantity
order emerge? The correspondence between counting one
further in the linguistic sequence and increasing by one in set
size is highly abstract. We suggest that children arrive at this
insight in a stepwise fashion, roughly as follows (for simplicity,
we consider the case where the insight occurs after “3” is
bound to 3):

When “1”, “2” and “3” are bound to their respective quantities,
the child has two instances in which further-by-one in count goes
with greater-by-one in set size: 1! 2 and 2! 3. Should the
alert child wonder whether this parallel continues to hold, s/he
will find immediate confirmation: counting from “3” to “4”
indeed goes with a set size increase 3! 4. At this point the

child has a very productive rule of thumb:

IMPLIES{FURTHER-BY-ONE(count list),

GREATER-BY-ONE (set size)}

Over repeated use of this highly productive rule, the child re-rep-
resents the two parallel relations as the same (more abstract)
relation – a successor relation – applying to different dimen-
sions, such as:

GREATER-THAN½(count(n), count(nþ 1)�

 ! GREATER-THAN½(setsize(n), setsize(nþ 1)�

At this point the analogy has revealed a powerful abstraction: the
common relational structure required for the successor function.

Bertrand Russell (1920) memorably stated: “It must have
required many ages to discover that a brace of pheasants and a
couple of days were both instances of the number 2: the
degree of abstraction involved is far from easy.” Though
English speakers may see the natural numbers as obvious, the
evidence from the Pirahã bears out Russell’s speculation: a con-
ception of “two-ness” is not inevitable in human cognition.
Carey’s proposal provides a route by which this insight can be
acquired.
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Abstract: We need not propose, as Carey does, a radical discontinuity
between core cognition, which is responsible for abstract structure, and
language and “Quinian bootstrapping,” which are responsible for
learning and conceptual change. From a probabilistic models view,
conceptual structure and learning reflect the same principles, and they
are both in place from the beginning.

There is a deep theoretical tension at the heart of cognitive
science. Human beings have abstract, hierarchical, structured,
and accurate representations of the world: representations that
allow them to make wide-ranging and correct predictions. They
also learn those representations. They derive them from con-
crete, particular, and probabilistic combinations of experiences.
But how can we learn abstract structure from the flutter and
buzz at our retinas and eardrums? Nativists, from Plato to
“core cognition” theorists, argue that it only seems that we
learn; in fact, the abstract structure is innate. Empiricists, from
Aristotle to connectionists, argue that it only seems that we
have abstract structure; in fact, we just accumulate specific
sensory associations. When we see both abstract structure and
learning – notably in scientific theory change – traditional nati-
vists and empiricists both reply that such conceptual change
requires elaborate social institutions and explicit external
representations.

Carey has made major contributions to the enormous empiri-
cal progress of cognitive development (Carey 2009). But those
very empirical discoveries have actually made the conceptual
problem worse. Piaget could believe that children started out
with specific sensorimotor schemes and then transformed those
schemes into the adult’s abstract representations. But Carey’s
own studies, along with those of others, have shown that this is
not a feasible option. On the one hand, contra the empiricists,
even infants have abstract structured knowledge. On the other
hand, contra the nativists, conceptual theory change based on

Commentary/Carey: Précis of The Origin of Concepts

BEHAVIORAL AND BRAIN SCIENCES (2011) 34:3 129


