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Analogical mapping is a core process in human cognition. A number of valuable
computational models of analogy have been created, capturing aspects of how
people compare representations, retrieve potential analogs from memory, and
learn from the results. In the past 25 years, this area has progressed rapidly,
fueled by strong collaboration between psychologists and Artificial Intelligence
(AI) scientists, with contributions from linguists and philosophers as well. There
is now considerable consensus regarding the constraints governing the mapping
process. However, computational models still differ in their focus, with some aimed
at capturing the range of analogical phenomena at the cognitive level and others
aimed at modeling how analogical processes might be implemented in neural
systems. Some recent work has focused on modeling interactions between analogy
and other processes, and on modeling analogy as a part of larger cognitive systems.
 2010 John Wiley & Sons, Ltd. WIREs Cogn Sci

ANALOGICAL COMPARISON AND ITS
ROLE IN COGNITION

Analogy has been studied from a variety
of perspectives. The computational modeling

of analogy, conducted in collaboration between
psychologists and AI scientists, has provided a
valuable source of insights which have led to a deeper
theoretical understanding of analogy and the roles it
plays in human cognition. This article summarizes
some of these insights, as well as some specific
computational models of analogy.

Analogy involves the comparison of two struc-
tured representations. That is, the representations
being compared typically include labeled relation-
ships between entities and between other relations.
Such representations contrast sharply with represen-
tations lacking internal structure, such as those based
on independent features or multidimensional vectors
(see Ref 1). This representational choice is dictated by
a large set of findings indicating that people are sen-
sitive to relational structure in processing analogy,2–4

and even in visual comparisons.5–8 Computational
models provide insights as to why this must be. One
well-known characteristic of analogy is that it can
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suggest new inferences; indeed, the most familiar type
of analogy is one in which a familiar base (or source)
domain is mapped to a less familiar (or more abstract)
target domain, with the result that a new prediction
or explanation is mapped from the base to the target.
Importantly, this kind of inference is selective: not
everything known about the base domain is mapped
to the target. Computationally, this kind of selective
inference can be captured if we assume (a) that peo-
ple have structured representations in which higher
order relations constrain the lower-order relations and
(b) that analogical mapping operates to prefer match-
ing systems of relations governed by higher order con-
straining relations such as cause or implies rather than
isolated matches (Gentner’s Systematicity principle9).
Psychological studies bear out this assumption. For
example, when people were given analogous scenar-
ios designed so that two pertinent facts were present in
the base but not the target, and asked to make a new
inference about the target, they inferred whichever fact
was connected (in the base) via a higher order causal
relation to another matching fact.2 In other words,
they did not simply bring across any fact present in the
base but not the target; their inferences were implicitly
geared toward finding a larger matching system.

As this example suggests, causal relations often
serve as higher order relations in analogical process-
ing. When the antecedents of a causal relation are
matched, the consequent is projected to hold in the
new (target) situation (prediction); and if instead the
consequents are matched, the antecedents are pro-
jected to hold in the new situation (explanation or
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abduction). But other kinds of higher order rela-
tions can also serve to constrain analogical inference,
including logical and mathematical relations, such as
implication, and perceptual regularities, such as sym-
metry or monotonicity. To capture the processing
of causal theories, explanations, logical proofs, and
other such inferential systems requires structured rep-
resentations; they cannot be effectively represented
via mental distance models or feature set models (for
further discussion, see Ref 1).

In the early days of analogical research,
analogical processing was viewed as a rarified mental
operation, occurring only infrequently. Today the
emerging consensus among analogy researchers is
quite different. While spontaneous analogies between
dramatically different domains are indeed rare, the
same kinds of comparison processes that make distant
analogies possible also appear to underlie the more
mundane, everyday similarity comparisons we make,
including perceptual comparisons.5–8,10 These within-
domain analogical comparisons might even explain
behavior commonly attributed to rule-following.11–13

The psychological evidence pointing to the same
comparison processes underlying a wide range of
cognitive phenomena has motivated explorations of
larger-scale models of the roles in analogy in cognitive
processing, a new frontier for analogy research.

COMPUTATIONAL MODELS
OF ANALOGICAL PROCESSES

Analogy is generally decomposed into multiple
subprocesses, as follows:

1. Retrieval: Given a situation, find an analog that
is similar to it.

2. Mapping: Given two situations, align them
structurally to produce a set of correspondences
that indicate ‘what goes with what,’ candidate
inferences that follow from the analogy, and
a structural evaluation score which provides a
numerical measure of how well the base and
target align.

3. Abstraction: The results of comparison may be
stored as an abstraction, producing a schema or
other rule-like structure.

4. Rerepresentation: Given a partial match, people
may alter one or both analogs to improve the
match.

Finally, we note some other processes that,
although not specific to analogy, are nonetheless
important to it. First, psychological evidence suggests

that encoding has a large effect on analogical pro-
cessing. How two situations are encoded strongly
influences whether one will retrieve the other from
LTM, as well as whether they will yield a good
alignment when they are compared. Thus, how situa-
tions are encoded is of great importance to analogical
processing. Second, in addition to the structural eval-
uation that is specific to analogy, the results of an
analogy often receive a more general evaluation: e.g.,
are the inferences factually true (or at least plausible)
and are they relevant to the current context.

This functional decomposition fits with psycho-
logical evidence that different subprocesses have dif-
ferent characteristics. For example, mapping is known
to be sensitive to structural overlap, while retrieval is
dominated by surface overlap.14–16 Further, not all
comparisons lead to the formation of schema, so gen-
eralization may or may not occur from a specific
analogy. Finally, some models integrate two or more
of these operations into a single process, while oth-
ers use separate process models for each functional
process.

We now discuss these subprocesses and how
different models try to capture them. (See Table 1 for
a list of the models we discuss along with their chief
characteristic features.) We begin with mapping—the
one subprocess that all the models aim to capture.
Mapping is the core defining process for analogy.
One might be given both analogs, thereby eliminating
retrieval; one might or might not need to rerepresent,
or to draw an abstraction from the analogy; but
without mapping, there is no analogy. Indeed, most
of the models we discuss do not attempt to capture
retrieval from memory, nor abstraction from multiple
exemplars. Since all the models include some version
of analogical mapping, this is our logical starting
point. After discussing approaches to mapping, we go
on to examine the other subprocesses in sequence.

Mapping
The mapping process takes as input two structured
representations, the base (sometimes called source)
and target and computes one or more mappings. Each
mapping consists of a set of correspondences, each
linking a particular item (entity or statement) in the
base with a particular item (entity or statement) in
the target. It can also contain candidate inferences,
which are surmises about what is true in one
description based on projecting structure from the
other, as discussed above. Typically a mapping also
includes a numerical score, indicating its structural
quality.

Structure-mapping theory9,17–20 proposes that
the following constraints govern the mapping process:
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TABLE 1 Computational Models of Analogy and Their Key Characteristics

Name Processes Type General? Key feature

ACME Mapping Connectionist Yes Network used for multiple constraint satisfaction

AMBR Mapping Hybrid Yes Based on distributed micro-agent framework

ARCS Retrieval, mapping Connectionist Yes Parallel first-stage matches potential analogs; ACME
used as second-stage matcher

CAB Mapping Connectionist Yes Uses middle-out algorithm plus parallel constraint
satisfaction

CARL Mapping Symbolic No Understanding analogies for programming, first
incremental matcher

Copycat Encoding, mapping Hybrid No Letter-string analogies, using rules governed by
simulated annealing for encoding

DORA Retrieval, Mapping Connectionist Models early relation-learning as combining of role-
relations

DUAL Encoding, Retrieval, Mapping Hybrid Yes Uses AMBR for mapping, same distributed agent
framework for retrieval and encoding

EMMA Retrieval, Mapping Hybrid No Used Latent Semantic Analysis to model predicate
similarity

HDTP Mapping Symbolic Yes Uses antiunification to construct generalization

IAM Mapping Symbolic Yes First general-purpose incremental matcher

LISA Retrieval, Mapping Structured connectionist Yes Uses microfeatures and projection-based algorithm
neurally inspired

MAC/FAC Retrieval Symbolic Yes Parallel first-stage vector match to filter candidates;
SME used as stage 2 matcher

NLAG Mapping Symbolic Yes Top-down algorithm

SEQL Generalization Symbolic Yes Uses SME to compare exemplars, produces
probabilistic generalizations

SME Mapping Symbolic Yes Middle-out: parallel initial stage followed by
structurally consistent kernels & greedy merge
algorithm

Tabletop Encoding, mapping Hybrid No Place settings, using rules governed by simulated
annealing for encoding

Winston Mapping Symbolic Yes Early bottom-up algorithm; later, importance-
dominated matching

• Structural consistency: Structural consistency is
defined by two constraints:
o 1:1 constraint: Each item in the base maps to
at most one item in the target, and vice-versa.
o Parallel connectivity: If a correspondence
between two statements is included in a mapping,
then so must correspondences between its
arguments.

• Systematicity: Mappings that place systems of
relations—especially those governed by higher
order constraining relations—into correspon-
dence are preferred.

• Tiered identicality: Identical matches between
predicates and functions are preferred. By
default, relations must match identically, but

non-identical functions can be aligned if such
alignments would support a larger overlapping
structure. Depending on task demands, this
can be relaxed further to allow non-identical
relations to correspond, if they are suggested
by a larger structure and satisfy additional
criteria.

Viewed computationally, structural consistency
ensures that candidate inferences can be projected
consistently: Without these constraints, it is unclear
what substitutions should be made when projecting
inferences.21,22 Although there are cases in which
people appear to compute correspondences that
violate the 1:1 constraint,23 evidence from inference
patterns indicates that people are shifting between
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different mappings for the analogy. Within each
mapping, the 1:1 constraint is respected, and
inferences are made only on the basis of a structurally
consistent mapping.19,24,25 Most current models
of analogical processing incorporate the structural
consistency constraint.

The systematicity constraint increases the
likelihood that the winning interpretation of an
analogy will be an interconnected system of relations,
rather than a large set of coincidental matches. System-
aticity pushes the mapping process toward producing
candidate inferences, because interconnected systems
often contain further inferences that can be projected
from the base to the target. Among current models (as
described below), structure-mapping engine (SME),
Analogical Constraint Mapping Engine (ACME) and
connectionist analogy builder (CAB) incorporate
the systematicity constraint. In other models (e.g.,
Incremental Analogical Mapper (IAM), Learning and
Inference with Schemas and Analogies (LISA)) a
similar constraint of preferring highly connected base
structure to import may be used.

The tiered identicality constraint addresses a
key problem that faces any model of mapping: What
possible correspondences between items in base and
target should be considered? The answer chosen to this
question is one of the two factors that determine the
computational complexity of the analogical mapping
model. If semantic constraints on the matches are not
considered, then the matching problem becomes an
example of the general graph isomorphism problem,
which is known to be NP-complete—that is, it is
unlikely that any algorithm can solve it exactly in
polynomial time. An algorithm operates in polynomial
time if its consumption of a resource (like time or
number of processing units) rises in a way that is
bounded by a polynomial in the size of some property
of its inputs. An NP-complete method such as a
pure graph-matching model seems implausible, given
the ubiquity and fluency of analogical comparison
in human cognition; it would be implausibly slow,
if done serially, or require too much hardware, if
done in parallel. Further, psychological studies that
have pitted syntactic matches (pure graph matches)
against semantic matches have found that people
attend almost exclusively to the semantic matches
in processing analogies.19 Therefore, many analogy
models impose semantic restrictions on which items
in the base and target can match, thereby reducing the
complexity of matching. Requiring that predicates
be identical, or at least very similar, is a strong
semantic constraint that rules out the vast majority of
possible matches. Such a restriction brings the number
of potential correspondences down to O(N2), where

N is the size of the base and target descriptions—a
more psychologically plausible degree of complexity.a

Even so, whatever test is used to determine the
closeness of each pair of items must be cheap;
allowing arbitrary inference for each decision would
be prohibitive as the default operation within a
core cognitive process. Structure-mapping’s tiered
identicality constraint basically starts by allowing only
statements with identical predicates to match, and
allowing other matches only when they would create
a larger structure. Consider, for example

B: (implies
(connectedAtContact A B)
(movesWith A B))

T: (implies
(rotationallyConnectedTo C D)
(movesWith C D))

Falkenhainer’s minimal ascension criterion26 allows
non-identical substitutions for predicates playing cor-
responding roles in a larger structure if they have a
close common superordinate in the predicate hier-
archy. Here, connectedAtContact and rota-
tionallyConnectedTo have a common superordi-
nate relationship, connectedTo, and allowing those
statements to match would allow the implication
to match (otherwise, parallel connectivity would be
violated).

A number of other solutions have been proposed
for testing the closeness of relations. For example,
CAB27 uses a scheme that is similar to minimal
ascension, allowing matches between relations that
are close, with weightings inversely proportional to
relational distance. In CAB, this is done for all item
matches (instead of being restricted to just those pairs
that stand to create a larger structure match, as in
SME), so the number of matches considered will in
general be larger. In CopyCat28,29 and TableTop30,
which relationships can be matched is hard-wired in
a table associated with each program (the slipnet).
ACME31 used a similarity table to decide which
predicates could match, deriving the similarity table
when possible from WordNet lexical constraints. In
Environmental Model of Analogy (EMMA),32 co-
occurrence information computed via Latent Semantic
Analysis (LSA) was used for semantic filtering in
mapping and retrieval. This method failed to match
human mapping preferences, which are governed by
relational matches. However, it provided a reasonable
match to retrieval patterns which, as described below,
are more sensitive to surface matches.

The second major choice in models of mapping
is how the mapping is constructed. There are three
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basic plans: bottom-up, top-down of middle-out.
Bottom-up models (e.g., Ref 33)b generate sets of
correspondences between entities and see which
relations can match as a consequence. Top-down
models (e.g., CARL,34 Greiner’s NLAG model,35

IAM,36 and LISA37 start from key statements in the
base and attempt to find matches for them in the
target. Neither of these approaches scales particularly
well. For bottom-up strategies, if there are N entities
in the base and target, then the search space of
entity correspondences is of size N!.33 For top-down
strategies, there is the additional problem of selecting
which aspects of the base to project, followed by
finding ways to fit it to the target. Consequently, such
models tend to use a variety of heuristics to minimize
search. The third class of algorithm is the middle-
out—or more accurately, local–global—matching
process introduced in the SME,39,40 and also used
by ACME and CAB. Local–global algorithms begin
by finding all possible identity matches between
the potential analogs, in parallel—both low-level
information, such as object attributes, and high-level
information, such as causal relations. This creates an
initial set of correspondences based on identicality.
Arguments of these candidate statements are then
aligned, often using weaker identicality constraints,
since they are already known to be part of a larger
structure. Potential correspondences between entities
are hypothesized only when there are statements that
place them into alignment.

A related distinction is whether the mapping pro-
cess is alignment-first or projection-first. Alignment-
first models, such as SME or ACME, begin by aligning
the base and target, and on the basis of the align-
ment, further inferences are projected from base to
target. Projection-first models, such as LISA, begin
by projecting information from the base (or driver)
to the target (or recipient). In practice, alignment-
first models are generally use either a bottom-up or
a middle-out order, and projection-first models use
top-down matching order.

Note that the surface properties of the entities
themselves are assumed to be represented explicitly
in the base and target (e.g., Gray(Fido)), and such
statements also lead to correspondences. This means
that entities that are similar (i.e., that have similar
attributes) will be suggested as possible correspon-
dences. Because the local match stage is assumed
to happen in parallel, attribute matches can either
support or conflict with relational matches in the
subsequent merge algorithm. Thus, literal similarity
matches, in which the entity matches are consistent
with the maximal relational alignment, are very fast
to compute, consistent with the human pattern.3 In

contrast, cross-mapped matches, in which the entity
matches are inconsistent with the maximal relational
alignment, are more challenging to compute; If the
entity matches are sufficiently rich relative to the
potential relational alignment, SME may settle on
an entity match, missing the relational alignment.41

Once the local correspondences have been
found, they must be combined into mappings—struc-
turally consistent systems of correspondences that
constitute the output of the match process. SME first
groups the initial correspondences into internally con-
sistent groups (kernels), assigning each an evaluation
score by combining the numerical scores computed
for each node. Then it uses a greedy merge algorithm
to combine the kernels into globally consistent map-
ping(s). More than one mapping can be produced if
they are sufficiently close in size. SME’s incremen-
tal greedy merge algorithm yields polynomial-time
performance.42 ACME and CAB use a similar local-
global strategy to construct local correspondences, but
use parallel constraint satisfaction implemented via a
connectionist network to create a pattern of activation
corresponding to a mapping.

In CopyCat28,29 and TableTop,30 representation
and mapping are interleaved; the mapping can influ-
ence the representations. They use a parallel terraced
scan for both representation and mapping. Rules are
used to elaborate the input representations and to sug-
gest correspondences between them, based on a table
of allowable correspondences. Heuristic estimates of
interestingness are used to control how much process-
ing power each rule gets. This inspired key features
of Associative Memory-Based Reasoning (AMBR),43

which stores knowledge in units that are smaller than
cases. These are viewed as active agents, whose pro-
cessing is governed by a combination of spreading
activation, constraint satisfaction and marker pass-
ing. Its structural correspondence mechanism uses a
parallel local-global process similar to SME’s.

A different approach to mapping is to search
for a way that the base could be transformed into
the target, thus making them identical. For example,
Hahn and Chater’s44,45 Representational Distortion
account defines similarity according to the complexity
of the transformations needed to make one identical
to the other. RD models to date have focused on
modeling perceptual comparisons.

As described below, it is useful to consider
the kinds of overlap that can occur between two
descriptions. In Gentner’s typology,9 literal similar-
ity matches involve overlap in both relations and
attributes: e.g., one Prius is typically quite like another
Prius. Analogy matches involve mostly overlap in
relations, with little surface overlap. Cross-domain
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analogies, such as solar system/atom, are examples of
this type. Literal similarity matches express within-
domain comparisons: e.g., starting up one Prius is
like starting up another. Mere-appearance or sur-
face matches involve mostly overlap in attributes and
perhaps a few first-order relations: e.g., A toy car
looks like a real car. Importantly, structural align-
ment algorithms do not need a priori ‘modes’ to look
for different types of mappings. In SME, the same
alignment process is used for all these match types;
it will produce a different outcome—analogy, literal
similarity or mere-appearance—based on the kind of
match between base and target.

An important aspect of analogical reasoning
is computing new inferences from the analogy.
In symbolic projection-based models, like IAM
and heuristic-driven theory projection (HDTP) (see
below), the non-overlapping projected structure is
the inference. In alignment-first models like SME,
inferences are computed after the common structure
is identified, by finding propositions connected to the
common system in one analog (the base), but not
yet present in the other. Candidate inferences are
essentially adding structure, which is somewhat more
difficult in connectionist models. CAB does not model
inferences at all, and ACME required the insertion
of a special unit representing the form of a desired
inference in the target. LISA can recruit new units
to represent projected relations, but given that it is
limited to working with around three relations at a
time, it does not appear to be able to do complex
nested inferences.

The process of structural alignment appears to be
used psychologically to compute differences as well as
similarities.5,46 An alignable difference is a difference
that is related to the commonalities represented by the
mapping. For example, both a regular car and a Prius
have keys with which they are started, but the key of
a Prius is a block of plastic while the key of a regular
car is a flat piece of metal. Such differences can be
detected by pairs of conflicting candidate inferences:
e.g., what the respective keys are made of. Alignable
differences are more salient in human comparison than
are differences that are not related to the mapping
(non-alignable differences)46: e.g., differences in party
affiliation between Prius drivers and Hummer drivers.

Retrieval
One of the surprises in the psychology of analogy
is that retrieval is governed by different constraints
than mapping. Given two potential analogs, people
prefer mappings involving relational structure, with
more systematic structure being preferred, over sur-
face matches. In contrast, retrieval from long-term

memory is dominated by surface matches.14–16 Specif-
ically, if literally similar memories are available for a
given probe item, those are most likely to be retrieved,
followed by mere-appearance matches, with purely
relational analogies being the least frequent. Although
the dominance of surface over relational matches
might seem like a design flaw in human memory,
it has been proposed that this is a reasonable strategy
ecologically, since (a) things that look alike tend to
be alike in causal properties as well and (b) mental
representations are skewed toward concrete surface
properties, since those are what are delivered by
perception and hence highly likely to be encoded.17

This disconnect has led some researchers to propose
that retrieval should be viewed as a separate process.
ARCS47 for example, used a two-stage connectionist
network, which first filtered candidate memory items
in parallel and then used ACME to match the best.
Likewise, when MAC/FAC20 has a case in working
memory, it computes a simple feature vector from
the structural representation and uses that in a par-
allel search of long-term memory. It generates up to
three candidate memory items. This generates a mix
of literally similar and surface-similar matches, with
an occasional analogy. The corresponding structural
representations are then compared in parallel via SME
to produce one or more remindings.

Another alternative is to consider retrieval and
mapping as an integrated process. For example,
LISA37 represents propositions using a symbolic con-
nectionist scheme, where the roles arguments play in
relations are reified and connected to semantic fea-
tures, as entities are. These shared semantic features
help prime both retrieval of descriptions and mapping
connections between entities. Similarly, AMBR43 uses
hybrid symbolic-connectionist architecture to encode
LTM contents, with retrieval operations interleaved
with the mapping process.

While most analogy research uses structured
representations, a recent proposal views relations as
transformations between points in a continuous sim-
ilarity space. For example, in the special case of
single-relation comparisons (i.e., A is to B as C is
to ?), Leech et al.48 propose that relational priming
can be used to explain the sequence of phenomena
found in development. Such analogies are solved, they
argue, by retrieving a relevant transformation between
A and B, which then primes both the retrieval of a
relationship between C and what it is transformed
into, using a recurrent network.
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Generalization
Psychologically, comparing specific descriptions can
lead to a generalization.49–51 How and when this hap-
pens is still very much an open question. The simplest
model is to simply replace the entities in the common
structure with variables, to produce a simple schema,
with the candidate inferences becoming consequences
associated with that schema. Winston’s38 system
produced rules based on comparisons, but also stored
the original cases along with the rule so that the prece-
dents could be re-examined when applying the rule.
LISA37 can be used to produce schemas by a form of
self-supervised learning, adding new units to represent
the commonalities found during its mapping process,
although it does not compute probabilities for aspects
of its generalizations.

Another model of generalization is antiunifica-
tion, which involves finding the least general unifier
of two expressions. A unifier of two expressions is
a statement with variables that, with the appropriate
substitutions of values for variables, will be identical
to the two expressions. A unifier of an expression
thus captures in some sense what is common between
two expressions. A least general unifier is a unifier
with the fewest variables, thereby preserving more of
the shared common structure between the two expres-
sions. Antiunification has been used in analogy models
such as HDTP52,53, which has been used to model
proportional analogies54 and geometric analogies.55

SME computes a generalization by preserving
the common structure from a pair of analogs, and has
been used to model the psychological phenomenon
that such generalizations are more abstract and more
likely to be transferred to future analogs than are
the initial items.56 It is also sometimes desirable to
generalize over a set of examples—for example, when
learning a new category. SEQL57 constructs gener-
alizations over multiple examples. For any concept
being learned, SEQL stores the first exemplar and then
compares the next exemplar to the first. If they are suf-
ficiently similar, their generalization is stored. SEQL
maintains two lists, a list of generalizations and a list of
unassimilated exemplars. Each subsequent exemplar
is first compared against the generalization(s), using
SME. If it is sufficiently similar, it is assimilated into
the generalization (which may be altered by the align-
ment with the exemplar). In the assimilation process,
overlapping statements are merged, with correspond-
ing entities that are not identical being replaced by
placeholders. (Unlike most generalization algorithms,
variables are not introduced.) A probability is asso-
ciated with each statement and is updated during the

assimilation process.58 For example, a generalization
about swans might include the information

probabilityOf(White(Swan81),0.99)
probabilityOf(Black(Swan81),0.01)

based on the observed frequency of individuals that
have been assimilated into that generalization. Acci-
dental properties lead to low-probability statements,
which eventually are filtered out (or become inacces-
sible) if their probability remains low for a long time.
If no generalization is close enough, the new example
is then compared against the list of exemplars, and if
it is similar enough to one of them, a new generaliza-
tion is constructed by the same assimilation process.
This model supports disjunctive concepts (since there
can be more than one generalization) and exceptional
cases associated with a concept (through the list of
exemplars). Note that the assimilation process does
not introduce variables: the abstracted entities are still
concrete, albeit now more prototypical of the concept.
SEQL has been used in models of grammar learning
in infants,13 learning spatial prepositions across mul-
tiple languages,59 and hypothesizing perpetrators in
terrorist attacks.60

Encoding and Rerepresentation
All models of mapping and retrieval are sensitive
to the particular representations used to encode the
base, target, and memory items. Computationally, this
can be understood as a consequence of the expense
of arbitrary inference. Since similarity computations
appear to be ‘inner loop’ core operations of cognition,
i.e., they are used throughout cognitive processes,
they cannot rely on exponential (or worse) processes
to find matches. This sensitivity has often resulted in
the use of hand-coded representations, tailored to the
needs of the particular model. However, in some
cases, independent models of other psychological
processes have been used to create descriptions that
serve as inputs to analogical processing. PHINEAS
used descriptions of physical behavior produced by
qualitative simulation. Natural language input has
been used with analogy-based models of learning
intuitive physics61 and moral decision-making.62

A sketch understanding system has been used to
produce inputs for modeling the learning of spatial
prepositions59 and geometric analogies.63

There is psychological evidence that compar-
ison can affect the final representations of the
analogs.50,64,65 How to best model this interdepen-
dency between initial encoding, comparison process
and comparison and final encoding is still an open
question. Hofstader’s group has argued that mapping
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cannot be separated from encoding, and as noted
above, their CopyCat and TableTop models run rules
that do encoding and rules that do matching at the
same time. One disadvantage of these models is that
they are domain-specific; neither could operate in the
other’s domain. AMBR43 takes a similar approach,
embedding knowledge in micro-agents whose speed
of processing is a function of their estimated rele-
vance to the current problem. AMBR uses the same
mechanism to implement both semantic and episodic
memory, thus providing a functional equivalent of
long-term memory, which is missing from CopyCat
and TableTop.

The alternative to complete integration is
to interleave encoding and analogical processing.
PHINEAS66 introduced a map-analyze cycle, where
the results of the first round of similarity computation
were used to influence subsequent processing. Salvucci
and Anderson67 provide evidence that mapping
and other kinds of problem solving can be tightly
interleaved, using a story mapping task. By assuming
that attributes are computed before relations,
psychological findings on response times in visual
similarity tasks have been modeled with SME, which
can incrementally update its mappings in response to
the ongoing encoding of the base and target.68

One way that analogy influences encoding
is via rerepresentation. That is, people seem to
reconstrue the contents of the base and/or the
target in order to improve the match.3 In the
HDTP approach, rerepresentation is implemented by
logical inference rules which operate as part of the
antiunification process.69 The constraints of structure-
mapping theory have been used to derive a theory
of rerepresentation,70 identifying opportunities for
rerepresentation based on local changes that could
improve the overall match.

Over the long term, gains in expertise appear to
lead to changes in encoding,71 as well as to greater
likelihood of relational retrieval.72 Forbus et al.20

proposed that uniform relational encoding is a char-
acteristic of expert encoding, and that this promotes
relational retrieval. Finlayson and Winston73 argue
that encodings that lead to intermediate-sized repre-
sentations provide more expert-like retrieval.

LARGER SCALE SIMULATIONS

The hypothesis that analogy plays a central role
in human cognition suggests using analogy within
larger-scale models that capture broader swaths of
human cognition, in which models of individual
processes used in analogy are used in their proposed
functional roles. The integrated encoding approaches

(e.g., Hofstader’s group, AMBR) provide examples
of this. A path-mapping model of analogical
mapping has been developed for Adaptive Control
of Thought-Rational (ACT-R),67 supporting the
integrated modeling of mapping with other kinds
of ACT-R modeling. Recently several cognitive
architectures have been proposed with analogy at their
core. DUAL74 uses AMBR for mapping and retrieval,
using a hybrid symbolic/connectionist representation
scheme. DUAL has been used to model priming and
context effects on problem-solving. The Companions
cognitive architecture75 is based on structure-mapping
models. SME is used for mapping, MAC/FAC for
retrieval, and SEQL for generalization. To date the
companions architecture is the only one that has
been tested in experiments in which the inputs
were produced by groups other than the researchers,
and where the results were independently evaluated
by other organizations (e.g., learning Advanced
Placement (AP) Physics, evaluated by the Educational
Testing Service, and learning simple games, evaluated
by the US Naval Research Laboratory).

One challenge for current models of analogy is
what these investigations are revealing about the scale
of representations used in analogical processing. For
example, the number of relationships needed to rep-
resent problems and solutions in technical domains
(e.g., physics, engineering) is on the order of 10
or more, with visual descriptions being substantially
larger. Today’s connectionist models cannot handle
such representations: For example, the particular syn-
chronous binding scheme used by LISA means that it
is can match only three relations at a time; whether it
can handle complex analogies by shifting the focus of
attention around different parts of the representations
remains an open question. On the other hand, SME
does not currently model working memory limitations
at all, which is also unrealistic. Coming up with unified
models, that are both capable of human-like perfor-
mance on realistic tasks and have a clear, biologically
plausible implementation, remains an open problem.
A second challenge to current models is the question
of hand-coding. In most current models, the represen-
tations are created by the experimenters, leading to the
tailorability concern: that is, that (whether knowingly
or not) the researchers have encoded the items in such
a way as to give them the desired results. One way to
avoid hand-coding is to use pre-existing databases and
automatic (or semi-automatic) parsing and semantic
representation of the input text.62 Another route, at
least for visual materials, is to use automatic spatial
encoding of sketched materials.59,68
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CONCLUSION
By combining constraints and insights from cogni-
tive psychology and artificial intelligence, substantial
progress has been made in modeling a variety of phe-
nomena involved in analogical processing. Existing
models of analogical mapping, retrieval, and gener-
alization have been used to model a wide variety
of psychological phenomena, and have been used
to make predictions that shed new light on cogni-
tion. One promising future direction is the use of
analogical models to capture learning processes in cog-
nitive development (e.g., Refs 13,61,76,77). Another
potentially fruitful direction is the use of analogical
simulations in intelligent tutoring systems and learning
environments, to improve education and training.

Much research remains, of course, before we
have a complete account of analogical processing. For
example, work on larger-scale simulations involving

analogical processing, to explore the roles analogy
plays in perception, reasoning, categorization, and
learning represents an exciting new frontier which
is only beginning to be explored. Another exciting
direction is seeking biologically plausible ways of
implementing analogical processing, which will need
to evolve as we gain better understanding of neural
systems.

NOTES
a For example, if a parallel implementation is assumed,
and a fixed upper bound on the size of description to
be processed, only N2 processing units would have to
be set aside to represent correspondences.
b Winston later added importance-dominated match-
ing to the simulation,38 a top-down feature.
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