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Abstract 

Psychologically, rerepresentation appears to be an important 
technique for achieving flexibility in analogical matching.  
This paper presents a concise theory of rerepresentation in 
analogical matching.  It divides the problem into detecting 
opportunities for rerepresentation, generating 
rerepresentation suggestions based on libraries of general 
methods, and strategies for controlling the rerepresentation 
process.  We show that the kinds of opportunities can be 
exhaustively derived from the principles of structure-
mapping, and the methods for detecting them derived from 
consideration of how the SME algorithm works.  Four 
families of rerepresentation methods are proposed, as well as 
task-independent and task-dependent constraints on strategies.  
Implemented simulation examples are used for illustration. 

Introduction 
Rerepresentation re-construes parts of compared situations 

in order to improve a match.  It is an important process in 
analogical reasoning and learning.  In development, 
rerepresentation appears to play an important role in 
learning.  For example, Kotovsky & Gentner (1996) found 
that children are better able to make cross-dimensional 
analogies when they have been induced to rerepresent the 
two situations to permit noticing the common magnitude 
increase.  Rerepresentation also plays an important role in 
scientific discovery.  For example, Gentner et al (1997) 
argue that representation played a crucial role in Kepler’s 
working through his analogy of vis-Motrix to light.   

This paper presents a concise theory of rerepresentation in 
analogical matching.  The next section outlines the 
computational issues surrounding rerepresentation.  Our 
theory of rerepresentation is described next, and illustrated 
with implemented examples from a computer simulation 
using the Structure-Mapping Engine (SME) [Falkenhainer 
et al 1986, 1989; Forbus et al 1994]1.  Finally we discuss 
related and future work.   

                                                           
1 The representational vocabulary is drawn from Cycorp’s Cyc 

knowledge base, plus our own extensions.  Opportunity detection 
is carried out by Lisp code that uses SME datastructures, and 
suggestions about applicable methods are generated using our 
FIRE reasoning engine. 

Rerepresentation in analogical reasoning 
We assume, as usual in analogical reasoning research, that 
the representations used in matching are internal 
descriptions, as opposed to, for instance, lexical items.   

Every analogical matcher must, as part of its operation, 
make decisions about whether or not two local items 
(statements or entities) within the descriptions it is 
comparing can be aligned.  Structure-mapping postulates 
that these decisions are made based on tiered identicality, 
i.e., that relationships must by default be identical, and only 
under special circumstances should looser criteria (such as 
minimal ascension [Falkenhainer 1990]) be used to sanction 
local matches.  Other models have postulated that more 
generous criteria are always used, such as ignoring the 
semantics provided by the relations, yielding a purely 
structural match (e.g., IAM [Keane 1990]) or using some 
other representational resource to determine whether two 
relationships are alignable (e.g., the use of WordNet in 
[Holyoak & Thagard, 1989]).  Computationally, the tradeoff 
is between false negatives and false positives: Stricter 
criteria will miss potential matches, but looser criteria will 
generate more false positives.   

To evaluate the plausibility of where human analogical 
processing lies on this tradeoff, it is useful to consider how 
analogical matching fits into the larger scheme of cognitive 
processing.  Functionally, there are processes that generate 
the descriptions used as the base and target descriptions to 
be matched.  This includes the encoding processes used to 
construct representations from perceptual information, 
memory processes used to retrieve specific experiences and 
general knowledge from long-term memory, and reasoning 
that we might be doing upon such information, e.g., during 
problem solving.  While such processes are variable, they in 
fact involve a large degree of regularity: Whatever internal 
representation is generated for seeing, for example, a cat is 
expressed in the same internal representational conventions 
from one instant to the next, although the details of the 
specific descriptions computed may change as the cat 
stretches.  Similarly, the descriptions retrieved by memory 
use a uniform set of representational conventions.  The 
specific contents of descriptions for two distinct cats, for 
example, might vary widely due to differences in what was 
attended to as well as differences between the cats 
themselves, but it seems likely that much of the basic 
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vocabulary of perceptual and physical relationships is 
roughly constant over time.  On the other hand, differences 
in attention and task demands will affect what is encoded 
and to some degree how, and learning can change 
conceptual vocabularies and encoding strategies (cf. [Chi et 
al 1981]). Information gleaned from language can be highly 
variable (e.g., verb choices such as “ambled” versus 
“strolled” versus “ran” presumably affect internal 
representations beyond the difference in lexemes), and how 
much canonicalization occurs when understanding language 
is still an open question.   

This analysis suggests that false negatives are less of a 
concern than false positives, especially for more concrete 
descriptions.  Furthermore, false positives put more burden 
on matchers: More correspondences must be produced, and 
more possibilities considered when merging local 
hypotheses.  Given that merge operations are 
approximations (otherwise they would involve implausible 
amounts of backtracking search) and there are likely to be 
resource limitations on the amount of correspondences that 
can be generated, avoiding false positives seems like a 
better strategy for the organism. 

Rerepresentation seems inevitable, given that encoding 
processes can be variable, inputs vary, and representations 
evolve over time.  The real question is, where should it 
occur?  The structure-mapping model is to place it outside 
the matcher itself.  Consider the process(es) that evaluate 
the matcher’s output.  The mapping(s) produced must be 
examined to see if they yield results that are useful for the 
current task.  If they do not, changes ranging from tweaking 
the content of the base and target (i.e., rerepresentation) to 
choosing a new base or even abandoning the current line of 
effort are options available to such processes.  This seems to 
us to be a natural place to recover from false negatives.  The 
mapping(s) can be examined for opportunities for 
rerepresentation.  A library of rerepresentation methods, 
based on the type of opportunity, provide suggestions for 
specific rerepresentations.  Task-specific rerepresentation 
strategies determine which suggestions, if any, should be 
acted upon.  Once rerepresentation(s) have been made, 
changing the base and target, the match can be updated and 
the results evaluated again.   

A structure-mapping theory of 
rerepresentation 

We divide our account of rerepresentation into three parts: 
(1) Detecting opportunities for rerepresentation, (2) methods 
for rerepresentation, and (3) strategies that control which 
opportunities are exploited and what methods are used.  We 
discuss each in turn. 

Opportunities 
We characterize opportunities for rerepresentation based on 
which constraints of structure-mapping are violated.  Recall 
that, in addition to tiered identicality, the constraints of 
structural consistency define what legal matches are: 

• 1:1 constraint: Each item in the base maps to at most 
one item in the target, and vice-versa. 

• Parallel connectivity constraint: If a correspondence 
between two statements is included in a mapping, then 
so must correspondences between its arguments. 

Violations of identicality and 1:1 are more fundamental; 
as shown below, whether or not parallel connectivity is 
violated depends on where the failure to satisfy these other 
constraints occurs.  Table 1 concisely describes the 
possibilities.  We discuss each in turn, describing how to 
detect them based on the representations used in SME. 
 

Table 1: Rerepresentation opportunities 
 

Constraint Violates parallel 
connectivity? 

Opportunity 

Yes Holes Identicality 
No Gulches  
Yes Rivals 1:1 
No Leftovers 

Holes Recall that the initial step of the SME algorithm 
involves finding, in parallel, local match hypotheses that 
represent potential correspondences between items in the 
base and target descriptions.  What statements are initially 
aligned is governed by the tiered identicality constraint; by 
default only identical relations are matched.  Hence initially 
match hypotheses are constructed between all pairs of 
statements from base and target that have identical relations.  
The parallel connectivity constraint requires that 
corresponding arguments be aligned for the correspondence 
between two statements to be structurally consistent.  
Consequently, match hypotheses are also installed between 
arguments of aligned statements, if doing so would not 
violate tiered identicality.  (Non-identical functions can be 
aligned, as can any pair of entities.)  When this process is 
complete, the match hypothesis forest so produced serves as 
the starting point for grouping maximal structurally 
consistent clusters of match hypotheses into kernel 
mappings, which are combined via a greedy merge 
algorithm to produce mappings.   

Holes arise due to failures of the process of aligning 
arguments.  Consider the following pair of statements: 

B1: (cause (walk John Cave) 
           (inside John Cave)) 
T1: (cause (run Jill Chamber) 
           (inside Jill Chamber)) 
SME would construct a match hypothesis between B1 and 

T1, based on the identical relationships.  This in turn would 
cause it to attempt to construct match hypotheses between 
corresponding arguments.  It would succeed for the 
consequents, since the relations are identical.  It would fail 
for the antecedent, since walk and run are different 
relationships, assuming strict identicality.  Thus the 
hypothesis that B1 and T1 can match is marked as 
structurally inconsistent.  This failure is an example of a 
hole.  Holes can thus be detected by finding structurally 
inconsistent match hypotheses whose failure is due to an 
argument misalignment.  SME records such information 



when marking a match hypothesis as structurally 
inconsistent, making detection easy. 

Consider for example part of a description of two physical 
situations involving flow, water flow and heat flow (adapted 
from [Buckley, 1979]): 

B2: (cause (higherPressure Beaker Vial) 
           (flow Beaker Vial Water Pipe)) 
T2: (cause (hotterThan Coffee IceCube) 
           (flow Coffee IceCube Heat Bar))  
The higherPressure and hotterThan arguments are not 

alignable because they are not identical.  Such domain-
specific relationships appear to be used early in 
development [Kotovsky & Gentner, 1996].  Similarly, from 
[Clement & Gentner, 1991],  

B3: (implies (slurps Tam Minerals) 
             (attachesTo Tam Rock)) 

T3: (implies (records Satellite Sounds) 
             (orbits Satellite Planet)) 
Here both the antecedent and consequent fail to align, 

because they are very domain-specific.  Below we will see 
how such mismatches can be overcome. 

Gulches:   The only way that identicality can cause a 
failure to match two items without causing a hole is if the 
items are not themselves the arguments of any other pair of 
matching items, i.e., one or both are top-level expressions 
(aka roots) of their respective descriptions.  Such statements 
in the base show up as candidate inferences of the match.  
Gulches can be detected by looking for roots in the base and 
the target whose arguments have structurally consistent 
match hypotheses but do not themselves match. 

Consider for example a fragment from a variation of the 
classic solar system/Rutherford atom analogy: 
B4: (causes  
        (and (greaterThan (Mass Sun) 
                                         (Mass Planet)) 
         (attracts Sun Planet)) 
    (revolveAround Planet Sun)) 

T4: (implies 
     (and (greaterThan (Mass Nucleus) 
                      (Mass Electron)) 
         (attracts Nucleus Electron)) 
     (revolveAround Nucleus Electron)) 
Because the root statements themselves do not match, we 

have a gulch.   
Rivals:  Rivals are violations of the 1:1 constraint that 

lead to structural inconsistency of at least one match 
hypothesis.  This occurs when different correspondences for 
the same entity are implied by the match hypotheses for a 
statement’s arguments.  (SME records such information 
during its structural consistency calculations.) 

For example, consider matching a general schema for a 
feedback controller against a specific feedback system, a 
thermostat [Ma, 1999].  Here is a small fragment of the 
representations involved: 

B5: (senses SensorX SensedParameter) 
    (compares ComparatorX SensedParameter 
                          SetpointX) 
T5: (senses ThermostatY (Temperature AirY)) 
       (compares ThermostatY (Temperature AirY)  
              ThresholdY) 

In fact, the thermostat plays the role of both the 
comparator and sensor in the abstract schema.  However, 
this match cannot be allowed, since it violates the 1:1 
constraint.   

Leftovers:   Mappings are constructed by combining 
kernels, using a greedy merge process [Forbus et al 1994].   
This process starts with the largest kernel, and adds as many 
kernels to it as possible, subject to maintaining the 1:1 
constraint.  (Notice that, since kernels are already 
structurally consistent and maximal, merging two kernels 
cannot violate any other structure-mapping constraint.)  
Leftovers are kernels that are left out of a mapping because 
they have one or more entity correspondences that are 
inconsistent with the mapping.   

Typically leftovers are unfixable, since they represent 
fundamentally different construals of the same comparison.  
However, sometimes they indicate that a change in 
reification can improve a match.  Consider for example 
matching a description of a car and a motorcycle, where the 
tires of each are explicitly described as distinct individuals.  
Only two tires of the car can be involved in such a match, 
since each can only match to one tire of the motorcycle, e.g. 

B6: (isa LeftFrontWheel Wheel) 
    (isa RightFrontWheel Wheel) 
    (isa LeftRearWheel Wheel) 
    (isa RightRearWheel Wheel) 
    (hasAttributes LeftFrontWheel RoundShape) 
    (hasAttributes RightFrontWheel RoundShape) 
    (hasAttributes LeftRearWheel RoundShape) 
    (hasAttributes RightRearWheel RoundShape) 

T6: (isa FrontWheel Wheel) 
    (isa RearWheel Wheel) 
    (hasAttributes FrontWheel RoundShape) 
    (hasAttributes RearWheel RoundShape) 

Given relational structure that ties wheels to their function 
(i.e., rear wheels to providing power, front wheels for 
steering, depending on the car) the motorcycle’s front and 
rear wheels will be matched to one or the other of the car’s 
front and rear wheels, randomly.  The unmatched wheels are 
leftovers. 
Completeness.  Are there other opportunities for 
rerepresentation beyond those listed here?  Our analysis 
suggests not.  The only constraint of structure-mapping 
theory we have not exploited is systematicity.  But 
systematicity is a preference, providing guidance as to better 
or worse choices rather than ruling some out, as the others 
do.  Since the opportunities described in Table 1 exhaust the 
constraints of structure-mapping, we conclude that this set is 
complete. 

Now that we have characterized the opportunities for 
rerepresentation, we can examine methods for using them. 

Methods 
The appropriate rerepresentation method for each type of 
opportunity depends on the principle constraint being 
violated in it (i.e., identicality versus 1:1).   While the set of 
opportunities is fixed, deriving from the nature of the 
constraints of structure-mapping, the set of rerepresentation 
methods is relatively open.  Nevertheless, we can 



characterize families of methods for each type, as shown in 
Table 2.  We describe each in turn. 
 

Table 2: Rerepresentation strategies 
Constraint Methods 
Identicality Transformation 

Decomposition 
… 

1:1 Entity splitting 
Entity Collecting 

… 
 
 

Transformation: 
Transformations are rewrite rules that transform one or both 
of a pair of statements comprising a hole or gulch into 
equivalent statements that have the same meaning, at least 
with respect to the current description.  For example,  

B7: (greaterThan (Gravity Sun) (Gravity Earth)) 
T7: (lessThan (Gravity Earth) (Gravity Sun)) 
can be brought into alignment by transforming T7 to the 

predicate greaterThan and reversing the arguments.  Some 
transformations are more extensive, i.e.,  

B8: (higherPressure Beaker Vial) 
T8: (hotterThan Coffee IceCube) 

from the earlier example requires rewriting both expressions 
in terms of a more general, dimensional-independent 
comparative (e.g., greaterThan) and encoding the 
dimension by functions, e.g.,  

B8’: (greaterThan (Pressure Beaker)  
                   (Pressure Vial)) 

T8’: (greaterThan (Temperature Coffee) 
                   (Temperature IceCube)) 
which will match because non-identical function matches 
are allowed by structure-mapping, precisely to support these 
kinds of cross-dimensional comparisons.  This strategy was 
proposed by Kotovsky and Gentner (1996) as part of the 
explanation for why children improve in their ability to 
notice cross-dimensional matches after experiencing a series 
of close comparisons.   

Decomposition: 
Transformations are truth-preserving, but sometimes the 
relational structure supported by a statement only requires 
some aspect of its meaning.  In the walk/run case above, it is 
the underlying commonality that movement is occurring that 
is important; the mover is now inside the place they were 
moving to.  Decomposition strategies use the axioms that 
provide the meaning of relations to identify common aspects 
of their meaning, which can then be used in place of the 
original relationship.  Thus in the B1/T1 example above we 
might have  

B1’: (cause (moveTo John Cave)  
           (inside John Cave)) 
T1’: (cause (moveTo Jill Chamber)  
            (inside Jill Chamber)) 

Similarly, in the Tams/Satellite example above, if we view 
slurps and records as having a common relational 
component of collects, and attachesTo and orbits as 

having a common relational component of connectsTo, we 
would have via decomposition: 

B3’: (implies (collects Tam Minerals) 
              (connectsTo Tam Rock) 

T3’: (implies (collects Satellite Sounds) 
   (connectsTo Satellite Planet)) 

Entity splitting:  
Often the same entity plays multiple roles in the same 

representation.  Consider again the thermostat example.  
The conflict arises because it is playing two distinct roles 
(sensor and comparator) in the functional description.  If we 
refine the description of the thermostat, observing that it is 
the curvature of the bimetallic strip that measures the 
temperature, and the angular distance between the bimetallic 
coil and the dial’s angle that provides the comparison, then 
each of these aspects of the thermostat can match to distinct 
functional descriptions.  This is an example of an entity 
splitting strategy.  In general, entity splitting strategies 
require identifying ways to divide up an entity into distinct 
parts or aspects, and rewrite its roles in the description to 
use one or the other of these parts or aspects. 

In the example of functional matching of a thermostat 
raised earlier, examining the parts of the thermostat yields 
two distinct components responsible for different aspects of 
the functionality, e.g., 

T5’: (senses (CurvatureFn BimetallicStrip) 
             (Temperature AirY)) 
     (compares (AngleFn BimetallicStrip) 
               (Temperature AirY) 
               ThresholdY) 

Each of these components now matches to a different part of 
the functional specification. 

Entity collecting:  
Often there are multiple entities that play equivalent roles 

in some representation, such as the tires on a car, the strands 
in a DNA molecule, and the players on a team.  Consider 
such corresponding collections in the base and in the target.  
If they are equivalent with respect to the current description, 
there will be match hypotheses connecting each pair, 
although any mapping will select only a subset of these 
matches.  If the cardinality of the two collections is 
different, then some will be left out in any mapping.  A 
mapping could thus be improved by reifying these 
collections as explicit sets, and stating properties formerly 
associated with distinct individuals as properties of the sets.  
This brings more relational structure to bear on 
corresponding entities, and hence will raise the structural 
evaluation of the match.  We call such strategies entity 
collecting strategies.   In general, once a cluster of rival 
entity match hypotheses has been identified, knowledge 
about the kinds of entities involved must be used ascertain 
whether or not they can be reified into a collection (e.g., the 
strands of a DNA molecule or the players on a team), and  
to identify how statements about the individuals can (or 
cannot) be applied to the collection.   Entity collection does 
not always make sense: If most of the relational structure in 
the description concerns differentiating the roles that each 
team member plays, for example, replacing the player 
descriptions with a set of players would be unwise. 



Consider again the car/motorcycle example described 
earlier.  If we assume a function WheelsFn that denotes the 
set of wheels something has, and relationships that 
distribute collection membership and attributes over set 
membership (membersIsa and membersHaveAttribute) 

B6’: (membersIsa (WheelsFn MyCar) Wheel) 
   (membersHaveAttribute (WheelsFn MyCar)  
                          RoundShape) 

T6’: (membersIsa (WheelsFn MyMotorcycle) Wheel) 
   (membersHaveAttribute (WheelsFn MyMotorcycle) 
                          RoundShape)   

Strategies 
Conceptually, we view the process of rerepresentation as 
occurring in the following steps: 
1. Opportunities for rerepresentation are detected using 

the criteria described above, and selected for further 
processing. 

2. For each opportunity, methods are retrieved and tried to 
see if they can provide an improvement.  Each such 
improvement is a rerepresentation suggestion.   

3. One or more suggestions is adopted, causing changes in 
the base and/or target. 

4. The match is re-performed with the updated base and 
target descriptions. 

5. The process continues until the match is suitable. 
 

Strategies for controlling the rerepresentation process 
depend heavily on context and task demands.  These factors 
determine three things about the process: (1) when the result 
of a mapping is satisfactory for current purposes, and 
rerepresentation (or further rerepresentation) can be ignored, 
(2) when the process should be aborted, in favor of trying a 
new base or target, or something else entirely, and (3) which 
of the possible structures that could be added to a match via 
rerepresentation would be preferable (e.g., might provide a 
desired candidate inference).    

However, we also assume that the following task-
independent factors hold for human rerepresentation 
strategies: (1) Systematicity: all else being equal, 
rerepresentation suggestions that lead to larger structural 
evaluation scores will be preferred.  This is simply the 
extension of the systematicity preference of structure-
mapping to rerepresentation.  (2) High selectivity: The 
selection process is tightly controlled, so that very few of 
the possible opportunities are selected for consideration.   
As with the preference criteria for selecting which 
suggestions are adopted, we believe that this choice is 
governed by a combination of structural evaluation and 
task-specific criteria. 

The high degree of dependence on context and task makes 
meaningful simulation of the overall strategic process in 
isolation difficult.  Consequently, we have focused our 
simulation efforts on opportunity detection and 
rerepresentation methods, as demonstrated above, and 
postpone simulation of strategies to future work.    

Related Work 
The theory of rerepresentation presented here relies mainly 
on the concepts of structure-mapping theory; therefore to 
the extent that other accounts and models use the constraints 
of structure-mapping theory, it could be adapted to them, 
although the specific methods for detecting opportunities 
would have to be changed, since those rely on the 
processing model of SME as well.   

Most models of analogical matching (cf. IAM [Keane 
1990], LISA [Hummel & Holyoak, 1997]) have never been 
used as components in larger simulations, relying entirely 
on hand-generated representations. By contrast, SME has 
been used as a module in a variety of larger simulations and 
performance systems, and has demonstrated the ability to 
work with descriptions created automatically from large-
scale knowledge bases created by others (cf. [Mostek et al 
2000][Forbus, 2001][Forbus, et al 2002]).  LISA and 
DRAMA’s [Eliasmith & Thagard 2001] inability to match 
more than a handful of relationships seems problematic, 
given the ability of people to match everyday visual and 
linguistic material that is significantly more complex.   

The most closely related work on rerepresentation is that 
of Hofstader’s FARG group, with systems such as CopyCat  
[Hofstader & Mitchell, 1994] and TableTop [French, 1995] 
which combined matching with inference systems to 
construct representations.   The matchers in both CopyCat 
and TableTop were domain-specific; in contrast SME is 
domain-independent.   

Finally, representation transformation similar to those 
described here are sometimes used in case-based reasoning 
systems that rely on structured representations (cf. 
[Kolodner, 1994] [Leake, 1996]).  In CBR systems these 
transformations are used to adapt case knowledge to the 
current situation directly, in contrast with our use of them to 
improve the match itself. 

Discussion 
Previous work has shown that rerepresentation is an 
important aspect of analogical reasoning and learning.  This 
paper presents a general theory of rerepresentation.  It 
divides the problem into detecting opportunities, methods 
which suggest rerepresentations based on opportunities, and 
strategies that organize the application of the suggestions.   
Because we were able to derive the kinds of opportunities 
directly from the theoretical constraints of structure-
mapping, we claim the set we propose here completely 
characterizes them.  On the other hand, the methods for 
rerepresentation, which depend on what constraint is 
violated, are somewhat more open, since they depend on the 
specific content of the representation.  However, even here 
we were able to identify four families of methods that we 
believe covers a broad range of rerepresentation 
phenomena.  Some of these have been identified in the 
literature before, but our linking them into a tight theoretical 
framework is novel.  Finally, we discussed strategies for 
rerepresentation.  Since, according to our theory, strategies 
are strongly dependent on context and task, there are few 
constraints on them that can be derived directly from a 



general theory of rerepresentation (unlike opportunities and 
methods), but were still able to propose two constraints on 
them (systematicity and high selectivity).   Evidence for the 
utility of this theory was provided via simulation examples 
drawn from the literature involving opportunity detection 
and the construction and application of rerepresentation 
suggestions.   

Our next step is to expand our implementation.  Currently 
opportunity detection is fully implemented, but the library 
of rerepresentation methods contains only representative 
samples from each of the categories.  We plan to expand 
this library to handle the full range of rerepresentation 
problems we have encountered in our simulation work.  
Without the contextual and task constraints of a larger 
simulation to constrain strategy, the choice of what 
rerepresentation suggestions are followed is entirely by 
hand.   Thus we see another important step to be embedding 
our current rerepresentation implementation into a larger-
scale simulation, to see how well we can model phenomena 
from developmental and conceptual change research.  This 
effort will help us to develop a more detailed account of the 
strategies of rerepresentation.   
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