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Abstract. Graphical depictions of complex interactions pose a challenge to spa-
tial reasoning.  In this research, we tested whether analogical processes can be 
harnessed to help students learn to solve complex graphical reasoning problems. 
Specifically, we asked whether a brief training experience using spatial analo-
gies could help students learn about stock-and-flow graphs. The basic idea of 
our intervention was to juxtapose contrastive graphs and encourage students to 
compare them. In two studies, we test the following predictions derived from 
structural alignment theories of analogy: (1) comparing contrastive graphs dur-
ing training will lead to better performance in a graph-understanding task than 
will studying the same exemplars sequentially; and (2) comparing high-
similarity pairs will lead to better performance than will comparing low similar-
ity pairs. The results support both of these predictions, indicating that even a 
brief analogical comparison task can confer relational insight. Further, these 
results corroborate prior evidence that a structural alignment process underlies 
analogical comparison. 

Keywords: Analogy, Analogical Comparison, Structural Alignment, Spatial 
Learning, Graphical Reasoning. 

1 Introduction 

Comparison of exemplars is a powerful learning process that has been shown to 
improve learning in a variety of domains. Indeed, according to Gentner [1], “The 
simple, ubiquitous act of comparing two things is often highly informative to human 
learners… Comparison is a general learning process that can promote deep relational 
learning and the development of theory-level explanations” (pp. 247, 251). Analogical 
comparison has been shown to aid learning across a broad range of topics, ranging 
from preschoolers learning new words [2] through elementary school children learn-
ing estimation methods [3] to business school students learning contract negotiation 
skills [4]. Within the spatial domain, there is evidence that spatial analogies can help 
learners to extract and use common spatial structure between two exemplars. For 
example, preschoolers who are given a challenging mapping task from one model 
room to another perform better if they first compare two models than if they interact 
with the same two models one-at-a-time [5]. 

Smith, L.A. & Gentner, D. (2012). Using spatial analogy to facilitate graph 
learning. Spatial Cognition VIII, Lecture Notes in Computer Science, 7463, (pp. 
196-209). Berlin Heidelberg: Springer. 
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In this research we asked whether a brief analogical training experience, in which 
students were encouraged to make comparisons and identify contrasts, could help them 
learn important relational principles involved in complex graph integration problems. 
The outline of this paper is as follows. First, we lay out a theoretical framework for this 
work. We use the structure-mapping theory of analogy, which proposes that analogical 
comparison involves a process of structural alignment [6-7]. We then review research 
that illustrates how structural alignment is helpful for learning. Next we propose graph 
learning as a particularly fruitful domain in which to explore structural alignment as a 
learning tool, and introduce the specific kind of graphs that we investigated. We then 
present our experiments and review the results. We consider theoretical and applied 
implications of our findings, and close with a discussion of study limitations and future 
directions.  

1.1 Analogical Comparison Fosters Learning 

Comparison is powerful learning process [3], [7-8]. According to Structure-Mapping 
Theory (SMT) [6], [9-10], this is because comparison entails a structural alignment 
process that promotes a focus on common relational structure. This allows learners to 
move beyond superficial, possibly idiosyncratic features of particular examples [2], 
[11-12].  

Under Structure-Mapping Theory [6], [9-10], carrying out a comparison involves 
aligning two structured representations so that matching objects and relations are 
placed into correspondence with one another (structural alignment). Once aligned, 
inferences can then be projected from one representation to another1. A key point of 
SMT is that common relations are more likely to be highlighted during comparison 
than are common object properties. This is because the structural alignment process 
favors matches that are connected to other matching information. For example, adults 
asked to match elements between two pictures are more likely to choose correspon-
dences based on common relational role (rather than matching similar objects) if they 
have previously compared the two pictures [13]. 

Structural alignment paves the way for at least three distinct kinds of learning. 
First, as noted above, structural alignment highlights shared relational structure [4], 
[8], [13]. This can give rise to a new relational abstraction, which can then be trans-
ferred and applied to new situations [4], [8]. Second, rather paradoxically, highlight-
ing commonalities also facilitates noticing differences that are connected to the shared 
structure, known as alignable differences [14-17]. A third consequence of structural 
alignment is that inferences may be brought from one situation to the other.  

1.2 Analogical Comparison in Spatial Learning  

While analogy (structural alignment) is a domain-general process, spatial analogy is a 
fundamental and pervasive kind of analogy. In spatial analogy, one or both analogs 
contain spatial relations. For example, one can use a cross-domain spatial comparison 

                                                           
1 Many current models of analogical comparison have adapted these basic assumptions of SMT 

(for reviews, see Gentner & Forbus, 2011; Kokinov & French, 2003). 
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to describe the layered structure of Earth by likening it to the layers of a peach. Sever-
al studies show that within-domain, concrete spatial comparisons facilitate spatial 
learning [5], [11], [43]. For example, young children are successful at learning a non-
obvious spatial concept when asked to compare two spatial structures, one of which 
exemplifies the concept and the other which does not [43]. As another example, child-
ren learn novel spatial relations better when they compare two exemplars that depict 
the relation than when they see the exemplars separately [11]. Most studies on spatial 
comparison have focused on concepts and examples that are almost entirely spatial. 
An open question is whether providing a spatial comparison can facilitate learning 
spatial representations with a strong conceptual component, such as graphs and dia-
grams, where the spatial representation serves to illustrate concepts that are not them-
selves spatial. There is reason to think that spatial analogy can encourage conceptual 
learning; in natural language, space is frequently analogized to abstract domains (e.g., 
She was in between jobs), indicating that spatial analogy can serve as a springboard 
for abstract, conceptual knowledge [45]. In this work, we begin to address the ques-
tion of whether spatial comparison can simultaneously confer both spatial and con-
ceptual relational insight. The current studies focus on learning about graphs, a  
particularly challenging type of spatial representation.  

1.3 Graphs: A Complex Relational Task 

Successful graph comprehension requires highly sophisticated spatial and conceptual 
reasoning. Graphs simultaneously convey spatial relations (one line above another) 
and conceptual relations (A exceeds B) [18]. It is widely accepted that graph compre-
hension entails at least three major, intertwined component processes [18-20]. First, 
viewers must encode the visual array and identify the important visuospatial relation-
ships (e.g., a straight line slanting upward). Second, viewers must identify the  
underlying conceptual relations that those visuospatial relations represent (e.g., an 
increasing linear relationship between x and y). Finally, viewers must relate those 
relations to the variables depicted (e.g. a constant increase in carbon dioxide emis-
sions over time). In sum, when one looks at a graph they must be able to simulta-
neously identify both the spatial and underlying conceptual relations depicted (see 
[21] for a related claim about diagrammatic representations more generally). Because 
of this relational complexity, it is not surprising that students of all ages have difficul-
ties understanding graphs [18], [22-30].  

Our question was whether analogical comparison—a process that promotes rela-
tional learning—would be a useful tool for learning the challenging spatial task of 
integrating complex graphical representations. In the experiments presented here, we 
focused on reasoning about stock-and-flow (SF) graphs. Conceptually, a stock is 
some entity amount that is accumulated over time by inflows and/or depleted by out-
flows. Stocks can only be changed via these flows. The amount of stock in a system is 
determined by the relationship between inflow and outflow: when inflow exceeds 
outflow, the stock will increase; when outflow exceeds inflow, the stock will  
decrease; and when inflow equals outflow, the stock will stabilize.  
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Stocks and flows are pervasive across domains—for example, they capture the dy-
namics of water in a bathtub (Figure 1), cash flow of a bank account, and CO2 levels 
in the atmosphere. These stock and flow relations are often depicted graphically, as in 
Figure 2. SF graph problems, even simple ones, are unintuitive and difficult, even for 
highly educated people with substantial training in science, technology, engineering, 
and mathematics (STEM) [23], [29-33]. 

 

Fig. 1. Stocks and Flows in a bathtub. The amount of water in the tub is the stock. Water enter-
ing the tub through the faucet is the inflow. Water leaving the tub through the drain is the out-
flow. 

1.4 The Current Experiments 

In this set of studies, we tested whether presenting spatial analogies between graphical 
systems can help students learn to reason about stock-and-flow graphs like those  
depicted in Figure 2. The basic idea of our intervention was to juxtapose contrastive 
graphs and encourage students to compare them. This intervention was based on two 
principles of comparison processing derived from structure-mapping theory: (1) abstrac-
tion: analogical comparison reveals common structure [2-3], [8], [13]; and (2) contrast: 
analogical comparison highlights alignable differences—differences along a common 
dimension or predicate that plays the same role in the common structure [15-16].  

These principles, taken together, predict that if learners align two analogous but 
contrasting examples, the common structure will become more salient and any align-
able differences will become more noticeable [16]. This prediction has been borne out 
in studies of relational mapping and transfer in adults [4], [34] and children [5], [35-
37], [43], in both conceptual and spatial domains. For example, Gentner et al. [43] 
found evidence that comparison can help children learn a non-obvious spatial con-
cept, namely that triangles confer stability in construction. Specifically, when child-
ren were shown two toy buildings, a stable one that contained a triangle and a wobbly 
one that did not, children could use the alignment between them to identify the dis-
tinctive part (the triangle) as important for stability.  

A third principle that is particularly relevant for research on learning is that align-
ment is easier and less error-prone for novice learners (both children and adults) when 
the items being compared are highly similar in their surface features as well as in their 
relational structure, i.e., the items are literally similar [38-41], [43].  
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The studies consisted of a self-paced graph training task, followed by a set  
of graphical integration problems involving stocks and flows, which are described  
below. In the first study, we examined whether comparing examples leads to better 
performance on the graphical integration task than studying the same examples  
sequentially. In the second study, we varied the similarity of the pairs being compared 
during training, the details of which we will discuss later.  

2 Experiment 1 

2.1 Method 

Participants. 32 undergraduate students from Northwestern University took part in 
the study individually or in groups of two. Participants completed the task in 15-25 
minutes and for their time they received credit towards a course requirement. 

Materials and Procedure. The experimenter gave one task booklet to the participant 
and upon completion they returned the booklet to the experimenter. The booklet con-
tained a graph-training task followed by a graphical integration test. To make the task 
more concrete, all graphs were described in the context of CO2 levels, where the stock 
was the amount of CO2 in the atmosphere, inflow was the rate of CO2 emissions, and 
outflow was the rate of CO2 removal from the atmosphere (e.g., as it is taken up by 
plants). 

Graph-Training Task. During the training phase, participants saw three examples of 
stock and flow graphs, similar to the graphs in Figure 3. To facilitate structural align-
ment, each example looked exactly the same up to the midpoint of the x-axis (time = 
8). After the midpoint the examples differed in which of the three basic relationships 
between inflow, outflow, and stock they depicted: when inflow exceeded outflow,  
the stock was increasing; when outflow exceeded inflow, the stock was decreasing; 
and when inflow was equivalent to outflow, the stock was stable2. Thus, each of the 
examples only differed in one key relation between the three variables. Participants 
were randomly assigned to the Sequential or the Comparison training condition. In 
the Sequential condition, participants saw the three examples on separate pages. After 
seeing each example, participants were asked to explain the graphs by describing 
“What is going on in the TOP graph” and also “What is going on in the BOTTOM 
graph” (emphasis in the original instructions).  The order in which the examples were 
shown was counterbalanced across participants. In the Comparison condition, partici-
pants saw two examples side-by-side and were asked to describe both similarities  
 

                                                           
2 There are several more complex relations involving changes in net flow and the shape of the 

stock graph, but systematically varying those would compound the number of examples to be 
used. Thus in these studies we only focus on the three most basic relationships between stock 
and flows. 
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and differences between the two sets of graphs by listing “What is similar about the  
TOP (BOTTOM) graphs” and “What is different about the TOP (BOTTOM) graphs” 
(emphasis in the original instructions). Participants in the Comparison group only saw 
two stock-and-flow graph examples at one time; in order to make sure they saw all 
three examples, we gave them two separate comparisons to make. Thus, the Compari-
son group saw one of the examples twice (in two different comparison sets). The  
repeated example and the position of the example on the page (left or right) were 
counterbalanced across participants.  

 

Fig. 3. Sample Comparison Examples. The inflow/outflow (top) graphs are the same until the 
midpoint, when the inflow (solid line) trajectory changes. Likewise, the stock (bottom) graphs 
are the same up until the midpoint, when the stock trajectory changes, corresponding to the 
change in the inflow/outflow graph. In the training task, participants were directed to compare 
and contrast the top two graphs, and then compare and contrast the bottom two graphs.  

Graphical Integration Task. We adapted the graphical integration task from Booth 
Sweeney and Sterman [23]. In their original study, highly educated graduate students 
were presented with a picture of a bathtub and graphs showing the inflow and outflow 
of water, then asked to draw the trajectory of the stock of water in the tub. We  
used similar problems, although they were introduced in the context of CO2 levels  
in the atmosphere (Figure 3). Participants solved seven graphical integration  
problems. 
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Fig. 4. Sample Graphical Integration problem. Participants were given a graph that depicted 
inflows and outflows to the stock over time. They had to draw the resultant stock in the bottom 
graph.  

2.2 Measures 

Problem Score. For each graphical integration problem, participants received either 0 
or 1 point. Participants received one point if their response maintained the three basic 
relations between stock and flow. For example, if the inflow was greater than outflow 
from t=0-8, then the participant needed to draw a stock that was continually increas-
ing from t=0-8. Quantitative inaccuracies were not penalized. Participants could 
achieve a maximum score of 7 across the seven problems. Two raters blind to condi-
tion scored each problem. There was high interrater agreement, (96%, κ = 0.88); all 
disagreements were resolved through discussion. 
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2.3 Results and Discussion 

Our prediction was that participants who were given the opportunity to compare con-
trastive graphs would perform better on the graphical integration problems. This pre-
diction was borne out in the data. Participants who compared examples performed 
better (M=4.75, SE=0.49) on the graphical integration test than participants who stu-
died the examples separately (M=3.32, SE=0.78), t(30)=2.18, p<.05, d=0.77. Why do 
we see this performance advantage for the Comparison group? We suggest that the act 
of comparing the graphs enabled people to both (1) identify the relations common to 
both graphs and  (2) notice relational contrasts between them. That is, when learners 
were given the opportunity to align two analogous but contrasting examples, the 
common structure became more salient and the alignable differences between the 
graphs were more noticeable [16]. These two phenomena are exemplified in the simi-
larity/difference listings from two of the Comparison participants:  

─ “From t=0-8 inflow exceeds outflow.” (Similarity) 
─ “From t=8-16 inflow still exceeds outflow in [the top left graph], but inflow is less 

than outflow in [the top right graph].” (Difference) 
 

─ “Both CO2 contents increase from time 0 to 9” (Similarity) 
─ “In [the bottom left graph]; total stock CO2 goes down after 8 yrs. vs [the bottom 

right] graph where the stock CO2 value continues to increase.” (Difference) 

Our results are consistent with the claim that the structural alignment process both 
highlights common relational structure and accentuates alignable differences. Fur-
thermore, these data suggest that spatial analogy can facilitate learning about spatial 
representations with a strong conceptual component. In experiment two, we wanted to 
test a further prediction of structural alignment models of analogical comparison—
namely, comparing examples that share greater overall similarity (i.e., surface and 
structural similarity) will be more beneficial for learning than comparing examples 
where there is less surface similarity.  

3 Experiment 2 

Prior work demonstrates that structural alignment is easier for learners when the items 
being compared are highly similar in their surface features as well as in their relational 
structure [38], [43]. The claim is that, in cases of high similarity, surface similarity 
works in the service of relational similarity, and thus effectively guides learners to  
the correct alignment. Maximizing the likelihood that a learner achieves a successful 
structural alignment increases the likelihood that they will notice important relational 
commonalities and differences. Thus, a greater likelihood of successful alignment 
should translate into a greater likelihood of successful relational learning. Several stu-
dies have demonstrated a learning advantage for high similarity comparisons. In the toy 
building task mentioned above, children learned better when the two compared build-
ings shared high surface similarity, in contrast to low surface similarity [43]. Most  
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studies that report a high similarity advantage in learning by comparison have focused 
on children’s learning [5], [11], [43]; our question is whether we will see a similar ad-
vantage for high similarity with adults in a complex arena such as graph integration.  
In this study, we varied the similarity of examples that participants compared during 
training. Participants either compared graphs that shared both relational (structural) 
similarity and surface similarity—i.e., they had high overall similarity—or they com-
pared graphs that shared structural similarity but were perceptually dissimilar—they had 
low overall similarity.  

3.1 Method 

Participants. 62 undergraduate students from Northwestern University took part in 
the study individually or in groups of two. Participants completed the task in 15-25 
minutes and for their time they received credit towards a course requirement. 

Materials and Procedure. The procedure was as in Experiment 1—an experimenter 
handed a booklet to the participant. Upon completion the participant gave the booklet 
back to the experimenter. The booklet contained a graph-training task followed by a 
graphical integration test. 

High Alignment vs. Low Alignment Training. All participants compared examples 
during training, what differed was the overall similarity between the examples. One 
group of participants compared example graphs that shared both structural similarity 
and perceptual similarity. Specifically, the compared graphs contained the same rela-
tions between variables. For example, in Figure 3 both of the top graphs show outflow 
above (exceeding) inflow from t=0-8. In addition, the trajectories or shapes of the 
lines in the graphs were similar; in Figure 3, for example, the outflow line is parabolic 
in both graphs. These graphs were considered highly alignable because they shared 
both relational and surface similarity. For the sake of clarity, we call this the Same 
Shape training condition. Another group of participants compared graphs that main-
tained relational similarity, but were less perceptually similar. Thus, the same rela-
tions between inflow, outflow and stock were present (e.g., outflow exceeds inflow), 
but the shapes of the variable lines were different (e.g., the inflow was a parabolic 
function in one graph and an exponential function in the other). These graphs were 
considered less alignable because surface similarity could not facilitate alignment to 
the same degree. We call this the Different Shape condition. Participants were asked 
to list the similarities and differences for each comparison set, as in Experiment 1. 

Graphical Integration Test. The graphical integration test was as in Experiment 1. 

Measures 

Problem Score. We scored each graphical integration response as in Experiment 1.  
For each graphical integration problem, participants received either 0 or 1 point, for a 
maximum of 7 points across seven problems.  
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3.2 Results 

As predicted, participants who compared Same Shape examples performed better on 
the graphical integration problems (M=4.35, SE=0.40) than those who compared 
Different Shape examples (M=3.32, SE=0.47), t(60)=1.67, p<0.05, d=0.42, one-
tailed. Overall, these results are consistent with our prediction that performance is 
related to the ease of alignment, with students who were exposed to High Alignability 
(Same Shape) training performing better than those that were exposed to Low Alig-
nability (Different Shape) training. Comparing highly similar graphs enabled people 
to more easily identify the important relational commonalities and differences be-
tween the graphs, as exemplified in one participant’s similarity/difference listings:  

─ “For the first 8 years, the CO2 removal (outflow) is greater than CO2 emission in-
flow” (Similarity) 

─ “After 8 years, [the left graph] has a greater inflow than outflow while [the right 
graph] has same amount of inflow and outflow” (Difference) 

In contrast, comparing less similar graphs made it more difficult for people to focus 
on the relevant relational commonalities and contrasts. Below is a representative simi-
larity/difference listing for participants in the Different Shape condition. These partic-
ipants tended to describe superficial characteristics of the graphs rather than relational 
aspects.  

─ “They both measure inflows and outflows of CO2; they have the same key, and the 
same axis measurements; same colors; same titles” (Similarity) 

─ “[The left graph] is smooth; [the right graph] is straight until sharp junction” (Dif-
ference) 
 

In sum, we found that pairs that were easier to spatially align (because they were per-
ceptually similar) were more helpful in training, and led to better performance on the 
graphical integration test, than pairs that were more difficult to align. These results are 
consistent with the claim that, in early learning, comparing examples that are readily 
alignable—such as pairs that share overall similarity—is especially beneficial [5], 
[37], [43].  

4 Discussion 

These experiments provide initial evidence that the principles of structure-mapping 
can be used effectively to promote students’ learning in a domain with a high degree 
of relational complexity. Specifically, spatial alignment (spatial analogy) of examples 
facilitated the sophisticated spatial and conceptual reasoning required for the task. 
Participants who compared examples of stock-and-flow graphs during training were 
able to transfer their understanding to graphical integration problems. Our results also 
support the claim that ease of spatial alignment contributes to graph learning. Partici-
pants who saw perceptually similar graphs were better able to align them and notice 
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the key relational commonalities and differences between the variables on the 
graphs—e.g., that inflow exceeds outflow. This advantage for ease of spatial align-
ment is consistent with prior findings on spatial learning [5], [43]. 

In future work, we aim to further explore variability in the surface and structural 
similarity between examples. It would also be useful to identify other aspects of 
graphical examples that may make them easier or harder to align. Another issue that 
should be explored is how to better facilitate learning via comparison. In our studies, 
overall performance across conditions was not at ceiling—participants have room to 
grow in their learning. In addition to exploring the issue of optimal variation in exam-
ples, it would also be useful to develop ways to guide the comparison process more 
effectively. In the above studies, the comparison task was fairly open-ended—people 
were only asked to describe similarities and differences between the graphs. Prior 
work has shown that greater scaffolding during the comparison process leads to better 
learning [44]; it seems likely that constructing a more guided comparison task would 
be advantageous for helping students hone in on the multitudinous and complex rela-
tions embedded within graphs.  

Overall, our findings offer evidence that spatial analogical alignment can be used 
effectively for graph learning. In our study, detailed predictions from structure-
mapping theory and research were found to be applicable for promoting students’ 
graphical learning and reasoning. 
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