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Analogy

Analogy is (1) similarity in which the same relations hold
between different domains or systems; (2) inference that if
two things agree in certain respects then they probably agree
in others. These two senses are related, as discussed below.

Analogy is important in cognitive science for several
reasons. It is central in the study of LEARNING and discov-
ery. Analogies permit transfer across different CONCEPTS,
situations. or domains and are used to explain new topics.
Once learned, they can serve as MENTAL MODELS for
understanding a new domain (Halford 1993). For exam-
ple, people often use analogies with water flow when rea-
soning about electricity (Gentner and Gentner 1983).
Analogies are often used in PROBLEM SOLVING and induc-
tive reasoning because they can capture significant paral-
lels across different situations. Beyond these mundane
uses, analogy is a key mechanism in CREATIVITY and sci-
entific discovery. For example, Johannes Kepler used an
analogy with light to hypothesize that the planets are
moved by an invisible force from the sun. In studies of
microbiology laboratories, Dunbar (1995) found that
analogies are both frequent and important in the discovery
process.

Analogy is also used in communication and persuasion.
For example, President Bush analogized the Persian Gulf
crisis to the events preceding World War [I, comparing Sad-
dam Hussein to Hitler, Spellman and Holyoak 1992). The
invited inference was that the United States should defend
Kuwait and Saudi Arabia against Iraq, just as the Allies
defended Europe against Nazi Germany. On a larger scale.
conceptual metaphors such as “weighing the evidence™ and
“balancing the pros and cons” can be viewed as large-scale
conventionalized analogies (see COGNITIVE LINGUISTICS).
Finally, analogy and its relative, SIMILARITY, are important
because thev participate in many other cognitive processes.
For example, exemplar-based theories of conceptual struc-
ture and CASE-BASED REASONING models in artificial intelli-
gence assume that much of human categorization and
reasoning is based on analogies between the current situa-
tion and prior situations (cf. JUDGMENT HEURISTICS).

The central focus of analogy research is on the mapping
process by which people understand one situation in terms
of another. Current accounts distinguish the following sub-
processes: mapping, that is, aligning the representational
structures of the two cases and projecting inferences; and
evaluation of the analogy and its inferences. These first
two are signature phenomena of analogy. Two further pro-
cesses that can occur are adaptation or rerepresentation of
one or both analogs to improve the match and abstraction
of the structure common to both analogs. We first discuss
these core processes, roughly in the order in which they
occur during normal processing. Then we will take up the

Gentner, D. (1999). In R. A. Wilson & F. C. Keil (Eds.), The MIT encyclopedia of the
coonitive sciences (nn. 17-20). Cambridge. MA: MIT Press.
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issue of analogical retrieval, the processes by which peo-
ple are spontaneously reminded of past similar or analo-
gous examples from long-term memory.

In analogical mapping. a familiar situation—the base or
source analog—is used as a model for making inferences
about an unfamiliar situation—the target analog. Accord-
ing to Gentner's structure-mapping theory (1983), the
mapping process includes a structural alignment between
two represented situations and the projection of inferences
from one to the other. The alignment must be structurally
consistent, that is, there must be a one-to-one correspon-
dence between the mapped elements in the base and target,
and the arguments of corresponding predicates must also
correspond (parallel connectivity). Given this alignment,
candidate inferences are drawn from the base to the target
via a kind of structural completion. A further assumption
is the systematicity principle: a system of relations con-
nected by higher-order constraining relations such as
causal relations is more salient in analogy than an equal
number of independent matches. Systematicity links the
two classic senses of analogy, for if analogical similarity is
modeled as common relational structure, then a base
domain that possesses a richly linked system of connected
relations will yield candidate inferences by completing the
connected structure in the target (Bowdle and Gentner
1997).

Another important psychological approach to analogical
mapping is offered by Holyoak (1985), who emphasized the
role of pragmatics in problem solving by analogy—how
current goals and context guide the interpretation of an anal-
ogy. Holyoak defined analogy as similarity with respect to a
goal, and suggested that mapping processes are oriented
toward attainment of goal states. Holyoak and Thagard
(1989) combined this pragmatic focus with the assumption
of structural consistency and developed a multiconstraint
approach to analogy in which similarity, structural parallel-
ism, and pragmatic factors interact to produce an interpreta-
tion.

Through rerepresentation or adaptation, the representa-
tion of one or both analogs is altered to improve the match.
Although central to conceptual change, this aspect of anal-
ogy remains relatively unexplored. And through schema
abstraction, which retains the common system representing
the interpretation of an analogy for later use, analogy can
promote the formation of new relational categories and
abstract rules.

Evaluation is the process by which we judge the accept-
ability of an analogy. At least three criteria seem to be
tnvolved: structural soundness—whether the alignment and
the projected inferences are structurally consistent; factual
validity of the candidate inferences—because analogy is not
a deductive mechanism, this is not guaranteed and must be
checked separately; and finally, in problem-solving situa-
tions, goal-relevance—the reasoner must ask whether the
analogical inferences are also relevant to current goals. A
lively arena of current research centers on exactly how and
when these criteria are invoked in the analogical mapping
process.

As discussed above, processing an analogy typically
results in a common schema. Accounts of how cognitive

simulation occurs fall into two classes: projection-first
models, in which the schema is derived from the base and
mapped to the target: and alignment-first models, in which
the abstract schema is assumed to arise out of the analogical
mapping process. Most current cognitive simulations take
the latter approach. For example, the structure-mapping
engine (SME) of Falkenhainer, Forbus, and Gentner (1989),
when given two potential analogs, proceeds at first rather
blindly, finding all possible local matches between elements
of the base and target. Next it combines these into structur-
ally consistent kernels, and finally it combines the kernels
into the two or three largest and deepest matches of con-
nected systems, which represent possible interpretations of
the analogy. Based on this alignment, it projects candidate
inferences—by hypothesizing that other propositions ccn-
nected to the common system in the base may also hold in
the target. The analogical constraint-mapping engine
(ACME) of Holyoak and Thagard (1989) uses a similar
local-to-global algorithm, but differs in that it is a multicon-

" straint, winner-take-all connectionist system, with soft con-

straints of structural consistency, semantic similarity, and
pragmatic bindings. Although the multiconstraint system
permits a highly flexible mapping process, it often arrives at
structurally inconsistent mappings. whose candidate infer-
ences are indeterminate. Markman (1997) found that this
kind of indeterminacy was rarely experienced by people
solving analogies. Other variants of the local-to-global
algorithm are Hofstadter and Mitchell’s Copycat system
(1994) for perceptual analogies and Keane'’s incremental
analogy machine (IAM: 1990), which adds matches incre-
mentally in order to model effects of processing order. In
contrast to alignment-first models, in which inferences are
made after the two representations are aligned, projection-
first models find or derive an abstraction in the base and
then project it to the target (e.g., Greiner 1988). Although
alignment-first models are more suitable for modeling the
generation of new abstractions, projection-first models may
be apt for modeling conventional analogy and metaphor.

Finally, analogy has proved challenging to subsymbolic
connectionist approaches. A strong case can be made that
analogical processing requires structured representations
and structure-sensitive processing algorithms. An interest-
ing recent “symbolic connectionist” model, Hummel and
Holyoak’s LISA (1997), combines such structured symbolic
techniques with distributed concept representations.

Thus far, our focus has been on how analogy is pro-
cessed once it is present. But to model the use of analogy
and similarit: in real-life learning and reasoning we must
also understand how people think of analogies; that is,
how they retrieve potential analogs from long-term mem-
ory. There is considerable evidence that similarity-based
retrieval is driven more by surface similarity and less by
structural similarity than is the mapping process. For
example, Gick and Holyoak (1980; 1983) showed that
people often fail to access potentially useful analogs. Peo-
ple who saw an analogous story prior to being given a very
difficult thought problem were three times as likely to
solve the problem as those who did not (30 percent vs. 10
percent). Impressive as this is, the majority of subjects
nonetheless failed to benefit from the analogy. However,
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when the nonsolvers were given the hint to think back to
the prior story, the solution rate again tripled, to about 80—
90 percent. Because no new information was given about
the story, we can infer that subjects had retained its mean-
ing, but failed to think of it when reading the problem. The
similarity match between the story and the problem,
though sufficient to carry out the mapping once both ana-
logs were present in working memory, did not lead to
spontaneous retrieval. This is an example of the inert
knowledge problem in transfer, a central concern in EDU-
CATION.

Not only do people fail to retrieve analogies, but they are
often reminded of prior surface-similar cases, even when
they know that these matches are of little use in reasoning
(Gentner, Rattermann, and Forbus 1993). This relative lack
of spontaneous analogical transfer and predominance of sur-
face remindings is seen in problem solving (Ross 1987) and
may result in part from overly concrete representations
(Bassok, Wu, and Olseth 1995).

Computational models of similarity-based retrieval have
taken two main approaches. One class of models aims to
capture the phenomena of human memory retrieval, includ-
ing both strengths and weaknesses. For example, analog
retrieval by constraint satisfaction (ARCS; Thagard et al.
1990) and Many are called/but few are chosen (MAC/FAC;
Forbus, Gentner, and Law 1995) both assume that retrieval
is strongly influenced by surface similarity and by structural
similarity, goal relevance, or both. In contrast, most case-
based reasoning (CBR) models aim for optimality, focusing
on how to organize memory such that relevant cases are
retrieved when needed.

Theories of analogy have been extended to other kinds of
similarity, such as METAPHOR and mundane literal similar-
ity. There is evidence that computing a literal similarity
match involves the same process of structural alignment as
does analogy (Gentner and Markman 1997). Current com-
putational models like ACME and SME use the same pro-
cessing algorithms for similarity as for analogy.

The investigation of analogy has been characterized by
unusually fruitful interdisciplinary convergence. Important
contributions have come from philosophy, notably Hesse’s
analysis (1966) of analogical models in science, and from
artificial intelligence (AI), beginning with Winston’s
research (1982), which laid out computational strategies
applicable to human processing. Recent research that com-
bines psychological investigations and computational mod-
eling has advanced our knowledge of how people align
Iepresentational structures and compute further inferences
over them. Theories of analogy and structural similarity
have been successfully applied to areas such as CATEGORI-
ZATION, DECISION MAKING, and children’s learning. At the
same time, cross-species comparisons have suggested that
analogy r.ay be especially well developed in human beings.
These results have broadened our view of the role of struc-
tural similarity in human thought.

See also CONSTRAINT SATISFACTION; FIGURATIVE LAN-
GUAGE; LANGUAGE AND COMMUNICATION; METAPHOR AND
CULTURE; SCHEMATA

—Dedre Gentner
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Anaphora

The term anaphora is used most commonly in theoretical
linguistics to denote any case where two nominal expres-
sions are assigned the same referential value or range. Dis-
cussion here focuses on noun phrase (NP) anaphora with
pronouns (see BINDING THEORY for an explanaticn of the
types of expressions commonly designated “anaphcrs,” e.g.,
reflexive pronouns).

Pronouns are commonly viewed as variables. Thus, (1b)
corresponds to (2), where the predicate contains a free vari-
able. This means that until the pronoun is assigned a value,
the predicate is an open property (does not form a set).
There are two distinct procedures for pronoun resolution:
binding and covaluation. In binding, the variable gets bound
by the A-operator. as in (3a), where the predicate is closed,
denoting the set of individuals who think they have the flu,
and where the sentence asserts that Lili is in this set.

(1) a. Lucie didn’t show up today.
b. Lili thinks she’s got the flu.

(2) Lili (Ax (x thinks z has got the flu))
(3) a. Binding: Lili (Ax (x thinks x has got the flu))
b. Covaluation: Lili (Ax (x thinks z has got the flu) &
z = Lucie)
In covaluation, the free variable is assigned a value from the
DISCOURSE storage, as in (3b). An assumption standard

since the 1980s is that, while processing sentences in con-
text, we build an inventory of discourse entities, which can

further serve as antecedents of anaphoric expressions (Heim
1982: McCawley 1979; Prince 1981). Suppose (1b) is
uttered in the context of (la). We have stored an entry for
Lucie, and when the pronoun she is encountered, it can be
assigned this value. In theory-neutral terms, this assignment
is represented in (3b), where Lucie is a discourse entry, and
the pronoun is covalued with this entry.

The actual resolution of anaphora is governed by dis-
course strategies. Ariel (1990) argues that pronouns look for
the most accessible antecedent, and discourse topics are
always the most accessible. For example, (3b) is the most
likely anaphora resolution for (1b) in the context of (la).
since Lucie is the discourse topic that will make this mini-
mal context coherent.

Given the two procedures, it turns out that if Lili is iden-
tified as the antecedent of the pronoun in (1b), the sentence
has, in fact, two anaphora construals. Since Lili is also in the
discourse storage, (1b) can have, along with (3a), the coval-
uation construal (4).

(4) Lili (Ax (x thinks z has got the flu) & z = Lili)
(5) Lili thinks she has got the flu, and Max does too.

Though (3a) and (4) are equivalent, it was discovered in the
1970s that there are contexts in which these sentences dis-
play a real representational ambiguity (Keenan 1971). For
example, assuming that she is Lili, the elliptic second con-
junct of (5) can mean either that Max thinks that Lili has the
flu, or that Max himself has it. The first is obtained if the
elided predicate is construed as in (4), and the second if it is
the predicate of (3a).

Let us adopt here the technical definitions in (6). ((6a)
differs from the definition used in the syntactic binding the-
ory). In (3a), then, Lucie binds the pronoun; in (4), they are
covalued.

(6) a. Binding: o binds B iff o is an argument of a A-predi-
cate whose operator binds f.
b. Coevaluation: ¢ and B are covalued iff neither binds
the other and they are assigned the same value.

Covaluation is not restricted to referential discourse-entities—
a pronoun can be covalued also with a bound variable. Indeed,
Heim (1998) showed that covaluation-binding ambiguity can
show up also in quantified contexts. In (7a), the variable x
(she) binds the pronoun ker. But in (7b) her is covalued with x.

(7) Every wife thinks that only she respects her husband.
a. Binding: Every wife (Ax (x thinks that [only x (Ay(y
respects y’s husband))]))
b. Covaluation: Every wife (Ax (x thinks that [only x
(Ay(y respects x’s husband))}))

In many contexts the two construals will be equivalent, but
the presence of only enables their disambiguation here: (7a)
entails that every wife thinks that other wives do not respect
their husbands, while (7b) entails that every wife thinks
other wives do not respect her husband. This is so, because
the property attributed only to x in (7a) is respecting one’s
own husband, while in (7b) it is respecting x’s husband.
The binding interpretation of pronouns is restricted by
syntactic properties of the derivation (see BINDING THEORY).



	page 1
	page 2
	page 3
	page 4

