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Abstract

Many cognitive tasks involving analogy, such as understanding
metaphors, problem-solving, and learning, require the ability to
extend mappings as new information is found. This paper
describes a new version of SME, called I-SME, that operates
incrementally. 1-SME is inspired by Keane's IAM model and the
use of incremental mapping in Falkenhainer's PHINEAS learning
system. We describe the I-SME algorithm and discuss tradeoffs
introduced by incremental mapping, including parallel versus
serial processing and pragmatic influences . The utility of I-SME
is illustrated by two examples . First, we show that I-SME can
account for the psychological results found by Keane on a serial
version of the Holyoak & Thagard attribute mapping task .
Second, we describe how I-SME is used in the Minimal
Analogical Reasoning System (MARS), which uses analogy to
solve engineering thermodynamics problems .

1 . Introduction
Many cognitive tasks involving analogy, including
metaphor understanding, problem solving, and learning
require the ability to process information incrementally .
In metaphor understanding, readers often build up
correspondences across several sentences (Boronat &
Gentner, in preparation) . In problem solving, students
using a worked example to solve a related novel problem
may go back and forth between them, seeking additional
ways to interpret the new problem in light of the old . In
conceptual change, new data can lead to analogies being
modified or abandoned .
Burstein (1986) was the first to computationally model
incremental processing in analogical learning .
Falkenhainer's (1987, 1990) PHINEAS demonstrated that
SME could be used in a map/analyze cycle to model the
incremental use of analogy in discovering physical theories .
The first general-purpose incremental analogical matcher
was Keane's IAM (Keane & Bradshaw, 1988) .
This paper presents I-SME, an incremental version of SME
(Falkenhainer, Forbus, & Gentner, 1986 ; 1989) that
simulates the computations proposed by Structure-Mapping
theory (Gentner, 1983) . I-SME has all the capabilities of
SME, including the ability to generate novel candidate
inferences . Unlike SME, I-SME can extend its existing
interpretations when given new information about base or
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target. Section 2 discusses psychological and
computational issues raised by incremental mapping .
Section 3 describes the I-SME algorithm . Section 4
illustrates its operation on two kinds of tasks : (1) an
attribute-mapping task that shows I-SME can explain order
effects found by Keane (in press), and (2) modeling student
behavior in solving thermodynamics problems by referring
to worked examples . Section 5 discusses other issues and
future work .

Given propositional representations for a base and target,
1 . Local Match Construction : For each pair of

expressions in base and target, if their predicates are
identical, create a match hypothesis (MH) expressing
the possibility that they match. Corresponding
arguments of items participating in an MH are also
matched if either (1) their predicates are identical, (2)
the predicates are functions, or (3) they are entities .
This network of match hypotheses provides the grist
for subsequent processing .

2 . Kernel Construction : Find kernel mappings by starting
at MH's which are not themselves the argument of any
other. For each such MH ;, if it is structurally
consistent, then it and every MH below it comprise a
kernel. Otherwise, recurse on the MH's that are its
arguments .

3 . Structural Evaluation : Propagate scores through the
network of MH's, using argument connections to pass
activation downward. This "trickle-down" of scores
implements the systematicity preference . The score of
a mapping is the sum of the scores of its MH's .

4 . Merge : Construct up to n global interpretations of a
match by using a greedy algorithm to find structurally
consistent combinations of kernels that maximize
structural evaluation scores .

Figure 1 : The SME Algorithm

2. Issues in incremental mapping
Serial vs Parallel : What parts of the matching process
should be serial versus parallel? In SME (Figure 1),
processing is essentially parallel within the first three
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stages: only he final step of constructing global mappings
is serial' . By contrast, IAM is serial throughout: Even
decisions about local matches are made sequentially, so that
exploring alternate interpretations requires backtracking .
SME avoids backtracking by creating, in parallel, networks
representing all alternative local matches between items
plus intermediate clusters (i.e ., kernel mappings)
We believe that a combination of initial parallel and later
serial operation will best model human analogical
processing . Some serial processing is essential : One
cannot combine all information in parallel when some if it
is not yet available. However, we believe the fully serial
approach of IAM is unlikely to scale up to cognitively
interesting representations . The natural place for serial
processing is in the Merge step, because the kernels, which
represent coherent, structurally-consistent collections of
local matches, form a more appropriate unit of analysis for
limited-resource serial processing than individual local
matches themselves . (Figure 2 shows the kernel mappings
for a simple example .) When base and target share large
systematic structures, the number of kernels is small .
Serial, capacity-limited merging of kernels could thus
provide a plausible explanation for the "More is Less"
phenomena (Gentner & Ratterman, 1991) where additional
knowledge can improve both the rapidity and accuracy of
mapping .
Pragmatics: Our original position (Gentner & Clement,
1988, Gentner, 1989) was that pragmatic concerns affected

The fact that most SME implementations happen to run on serial
machines is irrelevant here . ACME (Holyoak & Thagard, 1989),
is also parallel in conception but is commonly implemented on
serial machines, and the extraction of a mapping from its network
is a serial process outside the simulation . Hummel & Holyoak
(1992) explored incremental mapping, but their scheme does not
handle higher-order relations , making it unsuitable for problem-
solving .
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Figure 2 : Kernels for the simple water/heat analogy example .

Mappings are constructed by merging consistent collections of kernels . In this example, the structurally best interpretation
merges kernels 1 and 2 . The worst interpretation merges kernels 4 and 5 .

only the pre- and post-processing of the mapping
subsystem, with mapping being entirely based on structural
consistency and relational identity matches . Others, such
as Holyoak (1985) claimed "The distinction [between
surface and structural similarities] thus crucially depends
on the goal of the problem solver ." Both positions have
become less extreme . Holyoak & Thagard (1989) have
incorporated structural consistency into ACME, and
Hummel & Holyoak (1992) have pointed out problems in
using pragmatics to influence the online mapping process .
On our side, we have adopted for some purposes a
technique called pragmatic marking (Forbus & Oblinger,
1990), to filter kernels that cannot yield novel candidate
inferences relevant to a goal . Incremental matching is
subject to misleading matches when only partial
information is available, and early poor decisions can
mislead subsequent processing . The use of this limited
form of pragmatic information during mapping can help
overcome these problems. However, we continue to believe
that in order to capture the generativity of human
analogical reasoning, the mapping process needs to have
enough leeway to detect unanticipated structural
correspondences . The incremental algorithm in this paper
cycles between a largely autonomous mapping process and
intervention by other goal-oriented processes .

3. The Incremental SME Algorithm
The Incremental SME algorithm (I-SME) accepts
information about base and target descriptions to compare .
Information can be presented to it all at once, one fact at a
time, or in any combination desired . (When I-SME is
given every item in base and target at the same time, its
results are identical to those of SME .) I-SME maintains a
small set of global mappings that represent its best
interpretations of how the base and target compare,
according to the information it has received . Each
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1 EXTEND :
Given new base items Bl ..Bi and new target items T1 . .Tj,
and previous global mappings M1 . .Mk (if any),

I Extend set of local match hypotheses {Mhi} by testing
B l . .Bi against new and old target items, and by testing
TI . .Tj against old and new base items . New elements
of the match hypothesis network that violate the
parallel connectivity constraint are marked as
inconsistent, and nogood links are introduced to
enforce the 1 :1 constraint in merge steps .

2 . Update the set of kernels . Starting with new root MH's
(those which are not arguments of other MH's), search
downward in parallel until the first structurally
consistent MH is found . It and all of its descendants
comprise a new kernel . New match hypotheses can
introduce new root mappings or subsume old ones. Let
K' be the set of new kernels .

3 . Carry out structural evaluation on the new match
hypotheses and K' . Filter K' via pragmatic
constraints, if any .

4 . Extend M1 ..Mk by merging in kernels from K'
whenever possible . (If no previous mappings exist, use
the greedy algorithm to generate an initial set from the
full collection of kernels K. This algorithm produces
at most n mappings, all of which are within p% of the
best in terms of their structural evaluation .) Keep at
most n mappings .

REMAP :
I . Let K be the entire set of kernel mappings . Let KF be

the result of filtering K via pragmatic constraints, if
any

2 . Clear the previous global mappings .
3 . Use greedy algorithm to find new set of mappings

starting from KF , as in step 4 of EXTEND

Figure 3 : Summary of the I-SME Algorithm

mapping (as in SME) has a structural evaluation score
indicating the overall quality of the match and a set of
candidate inferences representing surmises about the target
domain justified by importing information from the base .
Figure 3 summarizes the I-SME algorithm .
The I-SME algorithm follows the same basic sequence of
the SME algorithm . The major features are (1) the
datastructures and processing are carefully organized so as
to preserve previously computed results that are still valid,
rather than recomputing them, (2) the default operation is
to extend a set of existing mappings, rather than to start
from scratch, (3) the remap operation provides for
backtracking at the level of kernels if the accumulated
mappings become suboptimal, and (4) mappings are now
first-class entities that can be referred to by systems using I-
SME (e.g ., a problem solver can have as a goal extending
or verifying a particular mapping) .

The intuition here is that normally people first try to
incorporate new information into an ongoing mapping, but
that they can reinterpret the analogy if necessary . I-SME
does not automatically remap, since we believe remapping
criteria tend to be task-specific . To help external systems
make such decisions I-SME does provide an estimate of
what fraction of the total possible structural evaluation the
current mappings represent .
I-SME currently supports two filters on kernel S . 2

•

	

(REQUIRED Bi Ti) : Exclude any root mapping
that places another target item Tj in correspondence
with Bi, or places another base item Bj in
correspondence with Ti .

•

	

(IDENTICAL-FUNCTIONS) : Exclude any root
mapping that places non-identical functions in
correspondence .

The REQUIRED filter was used in PHINEAS ; it enforces
externally imposed correspondences (e.g ., the speaker says
that "heat is like water") . The IDENTICAL-FUNCTIONS
filter represents a conservative strategy often used by
subjects in an unfamiliar domain, when they may reject all
but the most certain mappings . The utility of this
constraint shown in Section 4 .2.
I-SME's computational complexity is quite low . Most of its
processing can be done in parallel, with bounds as reported
for SME in (Falkenhainer, Forbus, & Gentner, 1989) . The
greedy merge algorithm is linear in the number of kernels,
which in turn is between log (best case) and linear (worst
case) in the size of the match hypothesis network . The
match hypothesis network, in turn, is between linear (best
case) and quadratic (worst case) in the size of the base and
target descriptions . In other words, adding incremental
operation does not result in any increase in computational
complexity for I-SME with respect to SME. While we have
not yet optimized the code, already I-SME is fast even on
smallish computers .'

4. Examples

I-SME has been successfully tested with a corpus of
examples from our previous work . 4 Here we describe two
computational experiments that exploit its incremental
capabilities .

2 Currently these constraints are implemented as hard filters, but
we have experimented with "soft" implementations that allow
their violation when doing so would yield an otherwise excellent
match .
3 On a PowerBook 165c, small examples like Figure 2 take about
1/2 second, a typical qualitative physics example takes about two
seconds, and matching stories involving 67 and 52 expressions
respectively requires 34 seconds .
4 We have also used I-SME in a new version of our MAC/FAC
retrieval model and in a simulation of symmetry and regularity
detection (Ferguson, submitted) .
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(smart Steve)

	

(hungry fido)
(tall bill)

	

(friendly rover)
(smart bill)

	

(hungry rover)
(tall tom)

	

(friendly blackie)
(timid tom)

	

(frisky blackie)

Singleton first condition (easy) : Subjects mean time to
solve = 178 .0 seconds (Keane, in press)
Average # of I-SME remaps per example : 1 .5

(timid tom)

	

(hungry fido)
(tall tom)

	

(frisky blackie)
(tall bill)

	

(friendly blackie)
(smart bill)

	

(hungry rover)
(smart Steve)

	

(friendly rover)
Singleton last condition(hard) : Subjects' mean time to
solve = 363 .1 seconds (Keane, in press)
Average # of I-SME remaps per example : 3 .0

Figure 4 : Examples of attribute mapping task

4.1 The attribute mapping task

Keane (in press) demonstrates that providing information
incrementally can lead to order effects in analogical
processing . Consider the pairs of statements at the top of
Figure 4 (inspired by Holyoak & Thagard's (1989) attribute
mapping task) . If subjects are given each line, one at a
time, they start by matching SMART with HUNGRY and
STEVE with FIDO. In this example there is only one
statement about FIDO and one statement about STEVE,
and the hypotheses that suggest themselves as each new
item is added lead to a solution where every entity and
every attribute has a correspondence . By contrast, the pairs
of statements on the bottom are more difficult : The natural
initial guess, that TIMID goes with HUNGRY and TOM
goes with FIDO, cannot lead to an interpretation in which
everything has a unique match . Keane showed that
subjects take, on the average, twice as long to do such
problems when the singleton items are last as when they
are first .
We have some concerns about this task as a test of
analogical mapping, since it involves no higher-order
structure, which is the hallmark of analogical processing .
Nevertheless, the order effects Keane demonstrated seem
likely to appear even with more natural stimuli, so we used
I-SME with the condition that it remapped whenever an
entity or attribute could not be added to its current
mapping . 5 As Figure 4 shows, when I-SME is executed on

Although we disagree with similarity tables as a modeling
technique, to keep conditions between the LAM and I-SME and

To appear in the Proceedings of the Cognitive Science Society, August, 1994

the representations Keane used with IAM 6 , it produces the
same kinds of order effects found in human subjects : The
singleton-last condition, which on the average took subjects
twice as long, resulted in I-SME performing on the average
twice as many remaps .

Problem: Suppose helium enters a heater at 40° C and at a
rate of 2 kg/sec . If the outlet temperature is 100° C, what is
the heat transfer rate to the helium?
Worked Exam lie : Suppose air enters a heater at 50° C and
at a rate of 1 kg/sec . If the outlet temperature is 70° C,
what is the heat transfer rate to the air?
Solution : Let hl be the heater .
1 . h(inlet(hl)) = 324,253kJ/kg because (since air is an ideal
gas), h(inlet(hl)) = Cp(air)*T(inlet(hl)) and

Cp(air) = 1003 .414J/kgC and
T(inlet(h 1)) = 323 .15 K

2. h(outlet(hl)) = 344,321kJ/kg by the same argument,
since

T(outlet(hl)) = 343 .15K
3. q(hl) = 20068kJ/kg, because

h(outlet(h 1)) = h(inlet(h 1))+q(h 1)
4. Q(hl) = 20068kW, because

q(hl) = Q(hl)/mass-flow(h1)
mass-flow(h1) = mass-flow(inlet(h1))
mass-flow(inlet(hl)) = 1 .0kg/sec

Figure 5 : A typical problem and worked example given
to MARS (summarized in English) .

4.2 The Minimal Analogical Reasoning System
(MARS)

We are using I-SME to create cognitive simulations of
human problem-solving. For example, students often refer
to worked examples to figure out how to solve new
problems (Anderson & Thompson 1989 ; VanLehn, Jones,
& Chi, 1992) . MARS is designed to help explore this
phenomena, providing an architecture whose processes and
parameters should be adjustable to model different classes
of student behaviors.
MARS currently solves problems in engineering
thermodynamics . We chose that domain both because it is
difficult and because we already have developed
representations and tools for an intelligent learning
environment for engineering thermodynamics (Forbus &
Whalley, 1994), thus we can easily and automatically
generate representations of problems and worked

ACME as close as possible we implemented a simple similarity
table facility for this experiment .
6 We thank Mark Keane for providing his original representations .



examples.' MARS receives as input two propositional
representations, one representing the problem to be solved
and the other representing a worked example . (Figure 5
summarizes in English a typical pair of inputs .) MARS has
some qualitative knowledge about the kinds of processes
that occur in components of thermodynamic cycles, a
handful of numerical constants, and a simple equation
solver. However, MARS currently has no built-in
knowledge of thermodynamics equations . It begins by
creating an initial match involving the objects and its
qualitative understanding of them . MARS then begins a
search for equations and numerical values that will allow it
to find a numerical value for the goal quantity. To find
equations, it uses the initial set of correspondences to
identify information in the worked example that is
potentially relevant . The initial mapping(s) are then
extended with this new information, providing candidate
inferences that are examined for usable information .
Figure 6 shows MARS' solution (which is correct) for the
problem of Figure 5 . MARS extends its initial mapping
five times, getting the equations it needs from the new
candidate inferences sanctioned by the extended mapping.
MARS uses the identical-functions filter
constraint in extending its mappings to avoid misleading
correspondences. In this example, for instance, removing
that constraint allows MARS to match h (specific enthalpy)
with T (temperature), leading to a simpler but incorrect
solution . We believe that the appropriate use of mapping
filters may be acquired as part of either domain expertise or
general metaco nitive skills .

I

	

Extend mapping to include Q(h2) .
From mapping: q(h2)=Q(h2)/mass-flow(h2) .
Extend mapping to include mass-flow(h2) .
From mapping : mass-flow(inlet(h2))=mass-flow(h2) .

5 Derived mass-flow(h2)=2 .0 kg/sec from step 4 & givens .
6. Extend mapping to include q(h2) .
7 . From mapping : h(outlet(h2))=h(inlet(h2))+q(h2) .
8

	

Extend mapping to include h(inlet(h2))
9

	

From mapping : h(inlet(h2))=Cp(helium)*T(inlet(h2))
10. From knowledge base, Cp(helium)=5176 .85 J/kgC
11 . Derived h(inlet(h2))=1621 .13 kJ/kg, via steps 9 & 10 &

givens
12. Extend mapping to include h(outlet(h2)) .
3 . From mapping : h(outlet(h2))=Cp(helium)*T(outlet(h2)) .

14. Derived h(outlet(h2))=1931 .74 kJ/kg from steps 13, 10, and
givens .

15 . Derived q(h2)=310.61 kJ/kg from steps 7, 11, and 14 .
16 . Derived Q(h2)=621.22 kW from steps 2, 5, and 15 .

Figure 6 : A summary of MARS' solution to the problem

' Using representations designed and optimized for building a
learning environment for engineering undergraduates, rather than
specially designed for I-SME's use, provides a good test of I-
SME's robustness .
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Currently, MARS does not extract any operators or control
information from its worked example . 8 This is one design
choice that we believe should be varied to account for
differences in individual students . Other such choices
include how closely candidate inferences are scrutinized
and the size and composition of the MARS' knowledge
base. We are extending MARS to include a set of
programmable options corresponding to what we believe
will be theoretically important choices, and will explore its
behavior through the space of these options to see how well
it can account for variations in student performance .

5. Discussion

I-SME's technique of parallel computation of kernels and
serial merging appears to be computationally effective and
we believe that it is psychologically plausible . I-SME can
account for the order phenomena discovered by Keane,
while maintaining the efficiency of parallel operations for
local processing. Furthermore, MARS demonstrates that I-
SME can be used as a module in building sophisticated
problem solvers that operate via analogy .
Modeling analogy requires a delicate interplay between
goal-sensitive, strategic processes and processes of
structural alignment and mapping that can run on their
own. We think that the mix of parallel and serial
processing in I-SME may best allow for planfulness and
creativity .
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