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Introduction 
The past decade has seen remarkable progress in artificial 
intelligence, with such advances as self-driving cars, IBM 
Watson, AlphaGo, Google Translate, face recognition, 
speech recognition, virtual assistants, and recommender 
systems. Ray Kurzweil and others think that it is only a 
matter of decades before AI surpasses human intelligence. 
This symposium will evaluate the extent to which AI 
currently approximates the full range of human intellectual 
abilities, and critically discuss the prospects for closing the 
gap between artificial and human intelligence.  Participants 
will combine the perspectives of computer science, 
psychology, and philosophy.  
 

The Comparative Cognition of Humans and 
Machines  

Ken Forbus and Dedre Gentner 
 

While there has been great progress in both cognitive 
science and artificial intelligence, both would benefit from 
better communication between them. The comparative study 
of cognition in humans and intelligent machines can shed 
light on both kinds of systems.  In the last decade, the 
confluence of massive computational resources, massive 
data sets, and several decades of incremental advances has 
led to a substantial increase in the ability to build 
applications with neural networks.  Deep learning systems 
have shown impressive performance in image classification 
and game learning. However, they still fall far short of 
capturing human abilities such as explanation and inference, 
and they require orders of magnitude more data than 

humans do. We argue that a fundamental lack in these 
systems is their lack of explicit relational representations.  
The ability to represent and reason about relational patterns 
is central to our human ability to explain and predict, and to 
learn rapidly via analogies with prior knowledge. 
Fortunately, many of the same factors that have led to gains 
in deep learning systems are also acting to increase our 
ability to build large-scale systems with relational 
representations, which reason and learn in human-like ways. 
We discuss examples from recent experiments in which 
analogical learning over relational representations leads to 
far more humanlike and data-efficient learning than deep 
learning. 

AI and Cognitive Architecture 
John E. Laird 

 
There is more talk than ever about general AI, but all the 
emphasis appears to be on recognition, classification, or 
reactive decision making with very little on cognition. The 
emphasis seems to be on only slices of System 1. Within 
those slices, we see human-level or even super-human 
performance, but these are very thin slices. Each system is 
focused on one phenomenon, and given the emphasis on 
learning from large data sets; it leads to overfitting, not 
necessarily to specific data, but to the specific problem to 
the exclusion of developing anything that can work on 
another problem, or even interact with another cognitive 
capabilities. In contrast, humans are defined by their 
flexibility – they can work on many different problems, 
switching effortlessly from one task to another. They also 
can learn from many sources of knowledge, on line and in 
real time, and using a variety of learning techniques. 
Moreover, they can learn new tasks from scratch in real-
time from natural language instruction. A growing field 
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called Interactive Task Learning has developed an AI 
system that is embodied in a variety of robotic platforms 
and that can learn over 50 games and puzzles as well as 
navigation tasks. It integrates natural language processing, 
planning, perception, motor control, and learning within a 
cognitive architecture. Christian Lebiere, Paul Rosenbloom 
and I have proposed the Common Model of Cognition 
(CMC) to unify the theoretical underpinnings of many 
cognitive architectures, starting with Soar, ACT-R, and 
Sigma. CMC has a vastly different structure than current AI 
approaches, including procedural and declarative memories, 
working memory, multiple learning mechanisms. Although 
these components are common in cognitive science, they are 
the exception in current AI systems, in large part because of 
the emphasis on System 1, and off-line batch learning. Until 
AI takes cognitive architecture, as exemplified by the CMC, 
seriously, it will not achieve the flexibility, breadth, and 
adaptability we associate with human intelligence.  

Close the Gap and Cooperate 
Thomas Shultz and Ardavan Salehi Nobandegani 

 
We will argue that attempts towards achieving artificial 
general intelligence (AGI) should pay more attention to 
human intelligence and its neural underpinnings. Having to 
interact with humans, AGI will need an adequate grasp of 
human judgment and decision-making and moral principles. 
Human intelligence not only surpasses current AGI systems, 
but, importantly, it does so in a resource-efficient way, 
setting a gold standard for future AI systems. Many of the 
important AI algorithms originated in psychology, and that 
strategy is still worth pursuing. A current shortcoming of 
many AI systems is their limited capacity for generalization 
– the ability to transfer knowledge from a newly or 
previously learned task to other relevant tasks. AI could also 
benefit tremendously from cognitive and developmental 
psychology to better understand the developmental stages 
that human infants go through on their way toward adult-
level intelligence. To illustrate, we’ll focus a bit on the 
significance of autonomous learning (aka active learning) 
for bridging the current gap with humans. Even infants take 
an active role in their own learning by selecting what to 
work on, what to abandon, and perhaps which examples 
would be most useful. There is a key role here for learning 
cessation, the ability to give up on impossible learning 
tasks, identifiable by lack of continued progress. This paves 
the way for focusing on tasks in which progress and mastery 
are more likely. We can suggest ways of implementing 
these important human capacities in future AI systems. 
Finally, we want to stress the importance of a cooperative 
relationship between humans and machines. The notion of 
gap between us and them that can be closed or even 
surpassed suggests a more competitive relationship than 
there perhaps needs to be. The results of mutual cooperation 
between humans and machines could be much more 
interesting and desirable to achieve.  

How AI Can Understand Causality 
Paul Thagard 

 
Causality is important for operating in the world and 
explaining how it works. Yoshua Bengio and others have 
pointed out that deep learning and other AI systems lack a 
human-level understanding of causality. Thagard (2019) 
argues that human understanding of causality originates 
with sensory-motor-sensory schemas found in infants as 
young as 2.5 months. For example, a baby can see a rattle, 
hit it with hands, and see the rattle move and make a noise. 
Learning robots could potentially form such schemas, but 
would have to go beyond current AI systems in several 
ways.  First, they would need modal retention, the capacity 
to save and work with sensory and motor representations. 
This capacity is found in the Semantic Pointer Architecture 
of Chris Eliasmith (2013), but not in other cognitive 
architectures or AI systems. Second, they would need the 
capacity to learn dynamic patterns that capture changes in 
series of events. Third, they would need to be able to expand 
the rudimentary sensory-motor appreciation of causality to 
cover advanced elements that included regularities, 
probabilities, and manipulations.  
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